Flux.1-Dev / app.py
nirajandhakal's picture
Update app.py
a1097a0 verified
raw
history blame
3.59 kB
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
import os
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_IMAGE_SIZE = 1024
# Model setup
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
token=huggingface_token
).to(device)
def generate_image(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(42)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
return image, seed
css = """
body {
background-color: #f4faff;
color: #005662;
font-family: 'Poppins', sans-serif;
}
.container {
margin: 0 auto;
max-width: 900px;
padding: 20px;
}
.gr-button {
background-color: #0288d1;
color: white;
border-radius: 8px;
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #0277bd;
}
.gr-box {
border-radius: 12px;
border: 1px solid #eeeeee;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
gr.Markdown("""
# FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer
Enter a text prompt below to generate an image. Click 'Generate' to create your image.
""")
with gr.Row():
with gr.Column(scale=4):
prompt = gr.Text(
label="Prompt",
placeholder="Enter your prompt here",
lines=3
)
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant="primary")
result = gr.Image(label="Generated Image", type="pil")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
gr.Examples(
examples=[
"a galaxy swirling with vibrant blue and purple hues",
"a futuristic cityscape under a dark sky",
"a serene forest with a magical glowing tree",
"a portrait of a smiling woman with a colorful floral crown",
"a fantastical creature with the body of a dragon and the wings of a butterfly",
],
inputs=prompt,
outputs=[result, seed],
fn=generate_image,
cache_examples=True,
)
generate_button.click(
fn=generate_image,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch(share=True)