Spaces:
Runtime error
Runtime error
File size: 3,593 Bytes
b308db4 c843051 db2369c b308db4 c843051 860bc61 b308db4 39f57d1 c843051 b308db4 c843051 b308db4 a1097a0 b308db4 860bc61 b308db4 860bc61 5617b18 860bc61 2003452 860bc61 c843051 b308db4 c843051 5617b18 b308db4 860bc61 5617b18 860bc61 c843051 860bc61 c843051 5617b18 b308db4 39f57d1 c843051 515e26b c843051 b308db4 c843051 86dc630 b308db4 c843051 860bc61 c843051 b308db4 c843051 860bc61 b308db4 cbff83f c843051 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
import os
# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_IMAGE_SIZE = 1024
# Model setup
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=dtype,
token=huggingface_token
).to(device)
def generate_image(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(42)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
return image, seed
css = """
body {
background-color: #f4faff;
color: #005662;
font-family: 'Poppins', sans-serif;
}
.container {
margin: 0 auto;
max-width: 900px;
padding: 20px;
}
.gr-button {
background-color: #0288d1;
color: white;
border-radius: 8px;
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #0277bd;
}
.gr-box {
border-radius: 12px;
border: 1px solid #eeeeee;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
gr.Markdown("""
# FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer
Enter a text prompt below to generate an image. Click 'Generate' to create your image.
""")
with gr.Row():
with gr.Column(scale=4):
prompt = gr.Text(
label="Prompt",
placeholder="Enter your prompt here",
lines=3
)
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant="primary")
result = gr.Image(label="Generated Image", type="pil")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
gr.Examples(
examples=[
"a galaxy swirling with vibrant blue and purple hues",
"a futuristic cityscape under a dark sky",
"a serene forest with a magical glowing tree",
"a portrait of a smiling woman with a colorful floral crown",
"a fantastical creature with the body of a dragon and the wings of a butterfly",
],
inputs=prompt,
outputs=[result, seed],
fn=generate_image,
cache_examples=True,
)
generate_button.click(
fn=generate_image,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.launch(share=True) |