File size: 3,593 Bytes
b308db4
 
 
 
c843051
db2369c
b308db4
c843051
 
 
 
 
 
860bc61
b308db4
39f57d1
 
c843051
 
 
 
 
b308db4
c843051
b308db4
 
a1097a0
b308db4
860bc61
 
 
 
 
 
 
 
b308db4
860bc61
 
5617b18
860bc61
2003452
860bc61
c843051
b308db4
c843051
5617b18
b308db4
860bc61
 
 
 
5617b18
860bc61
 
 
 
c843051
860bc61
c843051
5617b18
b308db4
 
39f57d1
c843051
 
515e26b
c843051
 
 
 
 
b308db4
 
c843051
86dc630
b308db4
c843051
 
 
 
 
 
 
 
860bc61
c843051
 
 
b308db4
c843051
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
860bc61
 
b308db4
 
cbff83f
c843051
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline
import os

# Constants
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
DEFAULT_IMAGE_SIZE = 1024

# Model setup
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")

pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=dtype,
    token=huggingface_token
).to(device)

def generate_image(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(42)
    image = pipe(
        prompt=prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=guidance_scale
    ).images[0]
    return image, seed

css = """
body {
    background-color: #f4faff;
    color: #005662;
    font-family: 'Poppins', sans-serif;
}
.container {
    margin: 0 auto;
    max-width: 900px;
    padding: 20px;
}
.gr-button {
    background-color: #0288d1;
    color: white;
    border-radius: 8px;
    transition: background-color 0.3s ease;
}
.gr-button:hover {
    background-color: #0277bd;
}
.gr-box {
    border-radius: 12px;
    border: 1px solid #eeeeee;
}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
    gr.Markdown("""
    # FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer
    
    Enter a text prompt below to generate an image. Click 'Generate' to create your image.
    """)
    
    with gr.Row():
        with gr.Column(scale=4):
            prompt = gr.Text(
                label="Prompt",
                placeholder="Enter your prompt here",
                lines=3
            )
        with gr.Column(scale=1):
            generate_button = gr.Button("Generate", variant="primary")
    
    result = gr.Image(label="Generated Image", type="pil")
    
    with gr.Accordion("Advanced Settings", open=False):
        seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        
        with gr.Row():
            width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE)
            height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE)
        
        with gr.Row():
            guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
            num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
    
    gr.Examples(
        examples=[
            "a galaxy swirling with vibrant blue and purple hues",
            "a futuristic cityscape under a dark sky",
            "a serene forest with a magical glowing tree",
            "a portrait of a smiling woman with a colorful floral crown",
            "a fantastical creature with the body of a dragon and the wings of a butterfly",
        ],
        inputs=prompt,
        outputs=[result, seed],
        fn=generate_image,
        cache_examples=True,
    )
    
    generate_button.click(
        fn=generate_image,
        inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs=[result, seed]
    )


demo.launch(share=True)