Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler | |
from PIL import Image | |
import io | |
import os | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Set your Hugging Face API token | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
# Load the diffusion pipeline with the Hugging Face API token | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=guidance_scale | |
).images[0] | |
return image, seed | |
def download_image(image, file_format): | |
img_byte_arr = io.BytesIO() | |
image.save(img_byte_arr, format=file_format) | |
img_byte_arr = img_byte_arr.getvalue() | |
return img_byte_arr | |
examples = [ | |
"a galaxy swirling with vibrant blue and purple hues", | |
"a futuristic cityscape under a dark sky", | |
"a serene forest with a magical glowing tree", | |
"a futuristic cityscape with sleek skyscrapers and flying cars", | |
"a portrait of a smiling woman with a colorful floral crown", | |
"a fantastical creature with the body of a dragon and the wings of a butterfly", | |
] | |
css = """ | |
body { | |
background-color: #f4faff; | |
color: #005662; | |
font-family: 'Poppins', sans-serif; | |
} | |
#col-container { | |
margin: 0 auto; | |
max-width: 100%; | |
padding: 20px; | |
} | |
.gr-button { | |
background-color: #0288d1; | |
color: white; | |
border-radius: 8px; | |
transition: background-color 0.3s ease; | |
} | |
.gr-button:hover { | |
background-color: #0277bd; | |
} | |
.gr-examples-card { | |
border: 1px solid #eeeeee; | |
border-radius: 12px; | |
padding: 16px; | |
margin-bottom: 12px; | |
} | |
.gr-examples-card:hover { | |
background-color: #f4faf2; | |
border-color: #0277bd; | |
color: #005662; | |
} | |
.gr-progress-bar, .gr-progress-bar-fill { | |
background-color: #0288d1 !important; | |
} | |
.gr-slider, .gr-slider-track { | |
background-color: #0288d1 !important; | |
} | |
.gr-slider-thumb { | |
background-color: #005662 !important; | |
} | |
.gr-text-input, .gr-image { | |
width: 100%; | |
box-sizing: border-box; | |
margin-bottom: 10px; | |
} | |
""" | |
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer | |
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;"> | |
<div class="gr-examples-card"> | |
<h3>View Model Details</h3> | |
<p>Explore more about this model on Hugging Face.</p> | |
</div> | |
</a> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=4): | |
prompt = gr.Text( | |
label="Prompt", | |
placeholder="Enter your prompt here", | |
lines=2 | |
) | |
with gr.Column(scale=1): | |
generate_button = gr.Button("Generate", variant="primary") | |
result = gr.Image(label="Generated Image", type="pil") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
download_format = gr.Radio( | |
label="Download Format", | |
choices=["PNG", "JPEG", "SVG", "WEBP"], | |
value="PNG", | |
type="value", | |
) | |
download_button = gr.Button("Download Image") | |
download_button.click( | |
fn=download_image, | |
inputs=[result, download_format], | |
outputs=gr.File(label="Download"), | |
) | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[generate_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed] | |
) | |
demo.load( | |
fn=lambda: None, | |
inputs=None, | |
outputs=None | |
) | |
demo.launch(share=True) |