Flux.1-Dev / app.py
nirajandhakal's picture
Update app.py
0403122 verified
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from PIL import Image
import io
import os
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Set your Hugging Face API token
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Load the diffusion pipeline with the Hugging Face API token
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=200)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
return image, seed
def download_image(image, file_format):
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format=file_format)
img_byte_arr = img_byte_arr.getvalue()
return img_byte_arr
examples = [
"a galaxy swirling with vibrant blue and purple hues",
"a futuristic cityscape under a dark sky",
"a serene forest with a magical glowing tree",
"a futuristic cityscape with sleek skyscrapers and flying cars",
"a portrait of a smiling woman with a colorful floral crown",
"a fantastical creature with the body of a dragon and the wings of a butterfly",
]
css = """
body {
background-color: #f4faff;
color: #005662;
font-family: 'Poppins', sans-serif;
}
#col-container {
margin: 0 auto;
max-width: 100%;
padding: 20px;
}
.gr-button {
background-color: #0288d1;
color: white;
border-radius: 8px;
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #0277bd;
}
.gr-examples-card {
border: 1px solid #eeeeee;
border-radius: 12px;
padding: 16px;
margin-bottom: 12px;
}
.gr-examples-card:hover {
background-color: #f4faf2;
border-color: #0277bd;
color: #005662;
}
.gr-progress-bar, .gr-progress-bar-fill {
background-color: #0288d1 !important;
}
.gr-slider, .gr-slider-track {
background-color: #0288d1 !important;
}
.gr-slider-thumb {
background-color: #005662 !important;
}
.gr-text-input, .gr-image {
width: 100%;
box-sizing: border-box;
margin-bottom: 10px;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;">
<div class="gr-examples-card">
<h3>View Model Details</h3>
<p>Explore more about this model on Hugging Face.</p>
</div>
</a>
""")
with gr.Row():
with gr.Column(scale=4):
prompt = gr.Text(
label="Prompt",
placeholder="Enter your prompt here",
lines=2
)
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant="primary")
result = gr.Image(label="Generated Image", type="pil")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
download_format = gr.Radio(
label="Download Format",
choices=["PNG", "JPEG", "SVG", "WEBP"],
value="PNG",
type="value",
)
download_button = gr.Button("Download Image")
download_button.click(
fn=download_image,
inputs=[result, download_format],
outputs=gr.File(label="Download"),
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.load(
fn=lambda: None,
inputs=None,
outputs=None
)
demo.launch(share=True)