Spaces:
Runtime error
Runtime error
File size: 5,741 Bytes
b308db4 4318215 b308db4 4318215 db2369c b308db4 860bc61 b308db4 4318215 39f57d1 4318215 b308db4 4318215 b308db4 4318215 b308db4 860bc61 b308db4 4318215 860bc61 5617b18 860bc61 2003452 860bc61 4318215 b308db4 4318215 5617b18 b308db4 860bc61 5617b18 860bc61 4318215 c843051 4318215 5617b18 b308db4 39f57d1 c843051 4318215 860bc61 4318215 c843051 4318215 b308db4 4318215 c843051 4318215 0403122 4318215 860bc61 b308db4 4318215 cbff83f c843051 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
from PIL import Image
import io
import os
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Set your Hugging Face API token
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# Load the diffusion pipeline with the Hugging Face API token
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=200)
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale
).images[0]
return image, seed
def download_image(image, file_format):
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format=file_format)
img_byte_arr = img_byte_arr.getvalue()
return img_byte_arr
examples = [
"a galaxy swirling with vibrant blue and purple hues",
"a futuristic cityscape under a dark sky",
"a serene forest with a magical glowing tree",
"a futuristic cityscape with sleek skyscrapers and flying cars",
"a portrait of a smiling woman with a colorful floral crown",
"a fantastical creature with the body of a dragon and the wings of a butterfly",
]
css = """
body {
background-color: #f4faff;
color: #005662;
font-family: 'Poppins', sans-serif;
}
#col-container {
margin: 0 auto;
max-width: 100%;
padding: 20px;
}
.gr-button {
background-color: #0288d1;
color: white;
border-radius: 8px;
transition: background-color 0.3s ease;
}
.gr-button:hover {
background-color: #0277bd;
}
.gr-examples-card {
border: 1px solid #eeeeee;
border-radius: 12px;
padding: 16px;
margin-bottom: 12px;
}
.gr-examples-card:hover {
background-color: #f4faf2;
border-color: #0277bd;
color: #005662;
}
.gr-progress-bar, .gr-progress-bar-fill {
background-color: #0288d1 !important;
}
.gr-slider, .gr-slider-track {
background-color: #0288d1 !important;
}
.gr-slider-thumb {
background-color: #005662 !important;
}
.gr-text-input, .gr-image {
width: 100%;
box-sizing: border-box;
margin-bottom: 10px;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;">
<div class="gr-examples-card">
<h3>View Model Details</h3>
<p>Explore more about this model on Hugging Face.</p>
</div>
</a>
""")
with gr.Row():
with gr.Column(scale=4):
prompt = gr.Text(
label="Prompt",
placeholder="Enter your prompt here",
lines=2
)
with gr.Column(scale=1):
generate_button = gr.Button("Generate", variant="primary")
result = gr.Image(label="Generated Image", type="pil")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
download_format = gr.Radio(
label="Download Format",
choices=["PNG", "JPEG", "SVG", "WEBP"],
value="PNG",
type="value",
)
download_button = gr.Button("Download Image")
download_button.click(
fn=download_image,
inputs=[result, download_format],
outputs=gr.File(label="Download"),
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed]
)
demo.load(
fn=lambda: None,
inputs=None,
outputs=None
)
demo.launch(share=True) |