Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
import cv2 | |
import numpy as np | |
from PIL import Image, ImageOps | |
import imageio.v3 as iio | |
def load_model(): | |
model=tf.keras.models.load_model('./hip_impant_model.h5') | |
return model | |
st.title(":blue[Nishant Guvvada's] :red[AI Journey] The Hip-Implant X-ray Assistant") | |
image = Image.open('./title.jpg') | |
st.image(image) | |
st.write(""" | |
# Image Classification | |
""" | |
) | |
file = st.file_uploader("Upload an X-ray image", type= ['png', 'jpg']) | |
def model_prediction(path): | |
resize = tf.image.resize(path, (256,256)) | |
with st.spinner('Model is being loaded..'): | |
model=load_model() | |
yhat = model.predict(np.expand_dims(resize/255, 0)) | |
return yhat | |
def on_click(): | |
if file is None: | |
st.text("Please upload an image file") | |
else: | |
image = Image.open(file) | |
st.image(image, use_column_width=True) | |
image = image.convert('RGB') | |
predictions = model_prediction(np.array(image)) | |
if (predictions>0.5): | |
st.write("""# Prediction : Implant is loose""") | |
else: | |
st.write("""# Prediction : Implant is in control""") | |
st.button('Predict', on_click=on_click) |