|
import gradio as gr |
|
import torch |
|
from nemo.collections.asr.models import EncDecSpeakerLabelModel |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
STYLE = """ |
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous"> |
|
""" |
|
OUTPUT_OK = ( |
|
STYLE |
|
+ """ |
|
<div class="container"> |
|
<div class="row"><h1 style="text-align: center">The provided samples are</h1></div> |
|
<div class="row"><h1 class="text-success" style="text-align: center">Same Speakers!!!</h1></div> |
|
<div class="row"><h1 class="display-1 text-success" style="text-align: center">similarity score: {:.1f}%</h1></div> |
|
<div class="row"><tiny style="text-align: center">(Similarity score must be atleast 80% to be considered as same speaker)</small><div class="row"> |
|
|
|
</div> |
|
""" |
|
) |
|
OUTPUT_FAIL = ( |
|
STYLE |
|
+ """ |
|
<div class="container"> |
|
<div class="row"><h1 style="text-align: center">The provided samples are from </h1></div> |
|
<div class="row"><h1 class="text-danger" style="text-align: center">Different Speakers!!!</h1></div> |
|
<div class="row"><h1 class="display-1 text-danger" style="text-align: center">similarity score: {:.1f}%</h1></div> |
|
<div class="row"><tiny style="text-align: center">(Similarity score must be atleast 80% to be considered as same speaker)</small><div class="row"> |
|
</div> |
|
""" |
|
) |
|
|
|
THRESHOLD = 0.80 |
|
|
|
model_name = "nvidia/speakerverification_en_titanet_large" |
|
model = EncDecSpeakerLabelModel.from_pretrained(model_name).to(device) |
|
|
|
|
|
def compare_samples(path1, path2): |
|
if not (path1 and path2): |
|
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>' |
|
|
|
embs1 = model.get_embedding(path1).squeeze() |
|
embs2 = model.get_embedding(path2).squeeze() |
|
|
|
|
|
X = embs1 / torch.linalg.norm(embs1) |
|
Y = embs2 / torch.linalg.norm(embs2) |
|
|
|
|
|
similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5) |
|
similarity_score = (similarity_score + 1) / 2 |
|
|
|
|
|
if similarity_score >= THRESHOLD: |
|
return OUTPUT_OK.format(similarity_score * 100) |
|
else: |
|
return OUTPUT_FAIL.format(similarity_score * 100) |
|
|
|
|
|
inputs = [ |
|
gr.Audio(sources=["microphone"], type="filepath", label="Speaker #1"), |
|
gr.Audio(sources=["microphone"], type="filepath", label="Speaker #2"), |
|
] |
|
|
|
upload_inputs = [ |
|
gr.Audio(sources=["upload"], type="filepath", label="Speaker #1"), |
|
gr.Audio(sources=["upload"], type="filepath", label="Speaker #2"), |
|
] |
|
|
|
description = ( |
|
"This demonstration will analyze two recordings of speech and ascertain whether they have been spoken by the same individual.\n" |
|
"You can attempt this exercise using your own voice." |
|
) |
|
article = ( |
|
"<p style='text-align: center'>" |
|
"<a href='https://huggingface.co/nvidia/speakerverification_en_titanet_large' target='_blank'>ποΈ Learn more about TitaNet model</a> | " |
|
"<a href='https://arxiv.org/pdf/2110.04410.pdf' target='_blank'>π TitaNet paper</a> | " |
|
"<a href='https://github.com/NVIDIA/NeMo' target='_blank'>π§βπ» Repository</a>" |
|
"</p>" |
|
) |
|
examples = [ |
|
["data/id10270_5r0dWxy17C8-00001.wav", "data/id10270_5r0dWxy17C8-00002.wav"], |
|
["data/id10271_1gtz-CUIygI-00001.wav", "data/id10271_1gtz-CUIygI-00002.wav"], |
|
["data/id10270_5r0dWxy17C8-00001.wav", "data/id10271_1gtz-CUIygI-00001.wav"], |
|
["data/id10270_5r0dWxy17C8-00002.wav", "data/id10271_1gtz-CUIygI-00002.wav"], |
|
] |
|
|
|
microphone_interface = gr.Interface( |
|
fn=compare_samples, |
|
inputs=inputs, |
|
outputs=gr.HTML(label=""), |
|
title="Speaker Verification with TitaNet Embeddings", |
|
description=description, |
|
article=article, |
|
theme="huggingface", |
|
allow_flagging=False, |
|
live=False, |
|
examples=examples, |
|
) |
|
|
|
upload_interface = gr.Interface( |
|
fn=compare_samples, |
|
inputs=upload_inputs, |
|
outputs=gr.HTML(label=""), |
|
title="Speaker Verification with TitaNet Embeddings", |
|
description=description, |
|
article=article, |
|
theme="huggingface", |
|
allow_flagging=False, |
|
live=False, |
|
examples=examples, |
|
) |
|
|
|
demo = gr.TabbedInterface([microphone_interface, upload_interface], ["Microphone", "Upload File"]) |
|
|
|
demo.queue(max_size=5, default_concurrency_limit=4) |
|
demo.launch() |