nithinraok's picture
Update app.py
e08dd85 verified
import gradio as gr
import torch
from nemo.collections.asr.models import EncDecSpeakerLabelModel
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
STYLE = """
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
"""
OUTPUT_OK = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">The provided samples are</h1></div>
<div class="row"><h1 class="text-success" style="text-align: center">Same Speakers!!!</h1></div>
<div class="row"><h1 class="display-1 text-success" style="text-align: center">similarity score: {:.1f}%</h1></div>
<div class="row"><tiny style="text-align: center">(Similarity score must be atleast 80% to be considered as same speaker)</small><div class="row">
</div>
"""
)
OUTPUT_FAIL = (
STYLE
+ """
<div class="container">
<div class="row"><h1 style="text-align: center">The provided samples are from </h1></div>
<div class="row"><h1 class="text-danger" style="text-align: center">Different Speakers!!!</h1></div>
<div class="row"><h1 class="display-1 text-danger" style="text-align: center">similarity score: {:.1f}%</h1></div>
<div class="row"><tiny style="text-align: center">(Similarity score must be atleast 80% to be considered as same speaker)</small><div class="row">
</div>
"""
)
THRESHOLD = 0.80
model_name = "nvidia/speakerverification_en_titanet_large"
model = EncDecSpeakerLabelModel.from_pretrained(model_name).to(device)
def compare_samples(path1, path2):
if not (path1 and path2):
return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'
embs1 = model.get_embedding(path1).squeeze()
embs2 = model.get_embedding(path2).squeeze()
#Length Normalize
X = embs1 / torch.linalg.norm(embs1)
Y = embs2 / torch.linalg.norm(embs2)
# Score
similarity_score = torch.dot(X, Y) / ((torch.dot(X, X) * torch.dot(Y, Y)) ** 0.5)
similarity_score = (similarity_score + 1) / 2
# Decision
if similarity_score >= THRESHOLD:
return OUTPUT_OK.format(similarity_score * 100)
else:
return OUTPUT_FAIL.format(similarity_score * 100)
inputs = [
gr.Audio(sources=["microphone"], type="filepath", label="Speaker #1"),
gr.Audio(sources=["microphone"], type="filepath", label="Speaker #2"),
]
upload_inputs = [
gr.Audio(sources=["upload"], type="filepath", label="Speaker #1"),
gr.Audio(sources=["upload"], type="filepath", label="Speaker #2"),
]
description = (
"This demonstration will analyze two recordings of speech and ascertain whether they have been spoken by the same individual.\n"
"You can attempt this exercise using your own voice."
)
article = (
"<p style='text-align: center'>"
"<a href='https://huggingface.co/nvidia/speakerverification_en_titanet_large' target='_blank'>πŸŽ™οΈ Learn more about TitaNet model</a> | "
"<a href='https://arxiv.org/pdf/2110.04410.pdf' target='_blank'>πŸ“š TitaNet paper</a> | "
"<a href='https://github.com/NVIDIA/NeMo' target='_blank'>πŸ§‘β€πŸ’» Repository</a>"
"</p>"
)
examples = [
["data/id10270_5r0dWxy17C8-00001.wav", "data/id10270_5r0dWxy17C8-00002.wav"],
["data/id10271_1gtz-CUIygI-00001.wav", "data/id10271_1gtz-CUIygI-00002.wav"],
["data/id10270_5r0dWxy17C8-00001.wav", "data/id10271_1gtz-CUIygI-00001.wav"],
["data/id10270_5r0dWxy17C8-00002.wav", "data/id10271_1gtz-CUIygI-00002.wav"],
]
microphone_interface = gr.Interface(
fn=compare_samples,
inputs=inputs,
outputs=gr.HTML(label=""),
title="Speaker Verification with TitaNet Embeddings",
description=description,
article=article,
theme="huggingface",
allow_flagging=False,
live=False,
examples=examples,
)
upload_interface = gr.Interface(
fn=compare_samples,
inputs=upload_inputs,
outputs=gr.HTML(label=""),
title="Speaker Verification with TitaNet Embeddings",
description=description,
article=article,
theme="huggingface",
allow_flagging=False,
live=False,
examples=examples,
)
demo = gr.TabbedInterface([microphone_interface, upload_interface], ["Microphone", "Upload File"])
demo.queue(max_size=5, default_concurrency_limit=4)
demo.launch()