Spaces:
Sleeping
Sleeping
File size: 14,147 Bytes
46c348b 8e20df2 46c348b 8e20df2 58f2cea 8e20df2 ee39452 8e20df2 ee39452 8e20df2 ee39452 8e20df2 07fe9aa 8e20df2 8b54974 8e20df2 ee39452 8e20df2 ee39452 8e20df2 33482bf ee39452 8b54974 ee39452 6b6fc50 ee39452 6b6fc50 ee39452 6b6fc50 ee39452 8b54974 8e20df2 8b54974 8e20df2 33482bf 8e20df2 8b54974 07fe9aa 8b54974 07fe9aa 8b54974 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import streamlit as st
import os
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.document_loaders import TextLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from typing import Dict, List, Optional, Tuple
import numpy as np
import pandas as pd
import umap
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from sklearn.mixture import GaussianMixture
from langchain_core.runnables import RunnablePassthrough
from langchain_chroma import Chroma
def global_cluster_embeddings(
embeddings: np.ndarray,
dim: int,
n_neighbors: Optional[int] = None,
metric: str = "cosine",
) -> np.ndarray:
if n_neighbors is None:
n_neighbors = int((len(embeddings) - 1) ** 0.5)
return umap.UMAP(
n_neighbors=n_neighbors, n_components=dim, metric=metric
).fit_transform(embeddings)
def local_cluster_embeddings(
embeddings: np.ndarray, dim: int, num_neighbors: int = 10, metric: str = "cosine"
) -> np.ndarray:
return umap.UMAP(
n_neighbors=num_neighbors, n_components=dim, metric=metric
).fit_transform(embeddings)
def get_optimal_clusters(
embeddings: np.ndarray, max_clusters: int = 50, random_state: int = 200
) -> int:
max_clusters = min(max_clusters, len(embeddings))
n_clusters = np.arange(1, max_clusters)
bics = []
for n in n_clusters:
gm = GaussianMixture(n_components=n, random_state=random_state)
gm.fit(embeddings)
bics.append(gm.bic(embeddings))
return n_clusters[np.argmin(bics)]
def GMM_cluster(embeddings: np.ndarray, threshold: float, random_state: int = 0):
n_clusters = get_optimal_clusters(embeddings, random_state = 200)
gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
gm.fit(embeddings)
probs = gm.predict_proba(embeddings)
labels = [np.where(prob > threshold)[0] for prob in probs]
return labels, n_clusters
def perform_clustering(
embeddings: np.ndarray,
dim: int,
threshold: float,
) -> List[np.ndarray]:
if len(embeddings) <= dim + 1:
# Avoid clustering when there's insufficient data
return [np.array([0]) for _ in range(len(embeddings))]
# Global dimensionality reduction
reduced_embeddings_global = global_cluster_embeddings(embeddings, dim)
# Global clustering
global_clusters, n_global_clusters = GMM_cluster(
reduced_embeddings_global, threshold
)
all_local_clusters = [np.array([]) for _ in range(len(embeddings))]
total_clusters = 0
# Iterate through each global cluster to perform local clustering
for i in range(n_global_clusters):
# Extract embeddings belonging to the current global cluster
global_cluster_embeddings_ = embeddings[
np.array([i in gc for gc in global_clusters])
]
if len(global_cluster_embeddings_) == 0:
continue
if len(global_cluster_embeddings_) <= dim + 1:
# Handle small clusters with direct assignment
local_clusters = [np.array([0]) for _ in global_cluster_embeddings_]
n_local_clusters = 1
else:
# Local dimensionality reduction and clustering
reduced_embeddings_local = local_cluster_embeddings(
global_cluster_embeddings_, dim
)
local_clusters, n_local_clusters = GMM_cluster(
reduced_embeddings_local, threshold
)
# Assign local cluster IDs, adjusting for total clusters already processed
for j in range(n_local_clusters):
local_cluster_embeddings_ = global_cluster_embeddings_[
np.array([j in lc for lc in local_clusters])
]
indices = np.where(
(embeddings == local_cluster_embeddings_[:, None]).all(-1)
)[1]
for idx in indices:
all_local_clusters[idx] = np.append(
all_local_clusters[idx], j + total_clusters
)
total_clusters += n_local_clusters
return all_local_clusters
def embed(embd,texts):
text_embeddings = embd.embed_documents(texts)
text_embeddings_np = np.array(text_embeddings)
return text_embeddings_np
def embed_cluster_texts(embd,texts):
text_embeddings_np = embed(embd,texts) # Generate embeddings
cluster_labels = perform_clustering(
text_embeddings_np, 10, 0.1
) # Perform clustering on the embeddings
df = pd.DataFrame() # Initialize a DataFrame to store the results
df["text"] = texts # Store original texts
df["embd"] = list(text_embeddings_np) # Store embeddings as a list in the DataFrame
df["cluster"] = cluster_labels # Store cluster labels
return df
def fmt_txt(df: pd.DataFrame) -> str:
unique_txt = df["text"].tolist()
return "--- --- \n --- --- ".join(unique_txt)
def embed_cluster_summarize_texts(model,embd,
texts: List[str], level: int
) -> Tuple[pd.DataFrame, pd.DataFrame]:
df_clusters = embed_cluster_texts(embd,texts)
# Prepare to expand the DataFrame for easier manipulation of clusters
expanded_list = []
# Expand DataFrame entries to document-cluster pairings for straightforward processing
for index, row in df_clusters.iterrows():
for cluster in row["cluster"]:
expanded_list.append(
{"text": row["text"], "embd": row["embd"], "cluster": cluster}
)
# Create a new DataFrame from the expanded list
expanded_df = pd.DataFrame(expanded_list)
# Retrieve unique cluster identifiers for processing
all_clusters = expanded_df["cluster"].unique()
# Summarization
template = """Bạn là một chatbot hỗ trợ tuyển sinh và sinh viên đại học, hãy tóm tắt chi tiết tài liệu quy chế dưới đây.
Đảm bảo rằng nội dung tóm tắt giúp người dùng hiểu rõ các quy định và quy trình liên quan đến tuyển sinh hoặc đào tạo tại đại học.
Tài liệu:
{context}
"""
prompt = ChatPromptTemplate.from_template(template)
chain = prompt | model | StrOutputParser()
summaries = []
for i in all_clusters:
df_cluster = expanded_df[expanded_df["cluster"] == i]
formatted_txt = fmt_txt(df_cluster)
summaries.append(chain.invoke({"context": formatted_txt}))
df_summary = pd.DataFrame(
{
"summaries": summaries,
"level": [level] * len(summaries),
"cluster": list(all_clusters),
}
)
return df_clusters, df_summary
def recursive_embed_cluster_summarize(model,embd,
texts: List[str], level: int = 1, n_levels: int = 3
) -> Dict[int, Tuple[pd.DataFrame, pd.DataFrame]]:
results = {}
df_clusters, df_summary = embed_cluster_summarize_texts(model,embd,texts, level)
results[level] = (df_clusters, df_summary)
unique_clusters = df_summary["cluster"].nunique()
if level < n_levels and unique_clusters > 1:
new_texts = df_summary["summaries"].tolist()
next_level_results = recursive_embed_cluster_summarize(model,embd,
new_texts, level + 1, n_levels
)
results.update(next_level_results)
return results
page = st.title("Chat with AskUSTH")
if "gemini_api" not in st.session_state:
st.session_state.gemini_api = None
if "rag" not in st.session_state:
st.session_state.rag = None
if "llm" not in st.session_state:
st.session_state.llm = None
@st.cache_resource
def get_chat_google_model(api_key):
os.environ["GOOGLE_API_KEY"] = api_key
return ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
)
@st.cache_resource
def get_embedding_model():
model_name = "bkai-foundation-models/vietnamese-bi-encoder"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
model = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
return model
if "embd" not in st.session_state:
st.session_state.embd = get_embedding_model()
if "save_dir" not in st.session_state:
st.session_state.save_dir = None
if "uploaded_files" not in st.session_state:
st.session_state.uploaded_files = set()
@st.dialog("Setup Gemini")
def vote():
st.markdown(
"""
Để sử dụng Google Gemini, bạn cần cung cấp API key. Tạo key của bạn [tại đây](https://ai.google.dev/gemini-api/docs/get-started/tutorial?lang=python&hl=vi) và dán vào bên dưới.
"""
)
key = st.text_input("Key:", "")
if st.button("Save") and key != "":
st.session_state.gemini_api = key
st.rerun()
if st.session_state.gemini_api is None:
vote()
else:
os.environ["GOOGLE_API_KEY"] = st.session_state.gemini_api
st.session_state.model = get_chat_google_model(st.session_state.gemini_api)
if st.session_state.save_dir is None:
save_dir = "./Documents"
if not os.path.exists(save_dir):
os.makedirs(save_dir)
st.session_state.save_dir = save_dir
def load_txt(file_path):
loader_sv = TextLoader(file_path=file_path, encoding="utf-8")
doc = loader_sv.load()
return doc
with st.sidebar:
uploaded_files = st.file_uploader("Chọn file CSV", accept_multiple_files=True, type=["txt"])
if st.session_state.gemini_api:
if uploaded_files:
documents = []
uploaded_file_names = set()
new_docs = False
for uploaded_file in uploaded_files:
uploaded_file_names.add(uploaded_file.name)
if uploaded_file.name not in st.session_state.uploaded_files:
file_path = os.path.join(st.session_state.save_dir, uploaded_file.name)
with open(file_path, mode='wb') as w:
w.write(uploaded_file.getvalue())
else:
continue
new_docs = True
doc = load_txt(file_path)
documents.extend([*doc])
if new_docs:
st.session_state.uploaded_files = uploaded_file_names
st.session_state.rag = None
else:
st.session_state.uploaded_files = set()
st.session_state.rag = None
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
@st.cache_resource
def compute_rag_chain(_model, _embd, docs_texts):
results = recursive_embed_cluster_summarize(_model, _embd, docs_texts, level=1, n_levels=3)
all_texts = docs_texts.copy()
for level in sorted(results.keys()):
summaries = results[level][1]["summaries"].tolist()
all_texts.extend(summaries)
vectorstore = Chroma.from_texts(texts=all_texts, embedding=_embd)
retriever = vectorstore.as_retriever()
template = """
Bạn là một trợ lí AI hỗ trợ tuyển sinh và sinh viên. \n
Hãy trả lời câu hỏi chính xác, tập trung vào thông tin liên quan đến câu hỏi. \n
Nếu bạn không biết câu trả lời, hãy nói không biết, đừng cố tạo ra câu trả lời.\n
Dưới đây là thông tin liên quan mà bạn cần sử dụng tới:\n
{context}\n
hãy trả lời:\n
{question}
"""
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| _model
| StrOutputParser()
)
return rag_chain
@st.dialog("Setup RAG")
def load_rag():
docs_texts = [d.page_content for d in documents]
st.session_state.rag = compute_rag_chain(st.session_state.model, st.session_state.embd, docs_texts)
st.rerun()
if st.session_state.uploaded_files and st.session_state.gemini_api:
if st.session_state.gemini_api is not None:
if st.session_state.rag is None:
load_rag()
if st.session_state.gemini_api is not None and st.session_state.gemini_api:
if st.session_state.llm is None:
mess = ChatPromptTemplate.from_messages(
[
(
"system",
"Bản là một trợ lí AI hỗ trợ tuyển sinh và sinh viên",
),
("human", "{input}"),
]
)
chain = mess | st.session_state.model
st.session_state.llm = chain
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
for message in st.session_state.chat_history:
with st.chat_message(message["role"]):
st.write(message["content"])
prompt = st.chat_input("Bạn muốn hỏi gì?")
if st.session_state.gemini_api:
if prompt:
st.session_state.chat_history.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
with st.chat_message("assistant"):
if st.session_state.rag is not None:
try:
respone = st.session_state.rag.invoke(prompt)
st.write(respone)
except:
respone = "Lỗi Gemini, load lại trang và nhập lại key"
st.write(respone)
else:
try:
ans = st.session_state.llm.invoke(prompt)
respone = ans.content
st.write(respone)
except:
respone = "Lỗi Gemini, load lại trang và nhập lại key"
st.write(respone)
st.session_state.chat_history.append({"role": "assistant", "content": respone})
|