File size: 14,147 Bytes
46c348b
8e20df2
 
 
 
 
 
46c348b
8e20df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58f2cea
8e20df2
 
 
 
 
 
 
 
 
ee39452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e20df2
ee39452
 
 
 
 
 
8e20df2
 
ee39452
8e20df2
 
 
 
 
 
07fe9aa
8e20df2
 
 
 
 
 
 
 
8b54974
8e20df2
 
 
 
 
 
 
ee39452
8e20df2
 
 
 
 
 
 
 
 
 
 
 
ee39452
8e20df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33482bf
 
 
ee39452
 
 
8b54974
ee39452
6b6fc50
 
ee39452
 
 
 
6b6fc50
ee39452
 
 
 
 
 
 
 
 
 
 
 
 
 
6b6fc50
ee39452
 
 
 
8b54974
 
 
 
 
 
 
8e20df2
8b54974
 
 
 
8e20df2
 
 
 
 
33482bf
8e20df2
 
 
 
 
 
 
 
 
 
 
 
 
 
8b54974
 
 
 
 
 
 
 
 
 
 
07fe9aa
 
8b54974
 
 
 
 
07fe9aa
 
 
8b54974
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import streamlit as st
import os
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.document_loaders import TextLoader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate

from typing import Dict, List, Optional, Tuple

import numpy as np
import pandas as pd
import umap
from langchain.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from sklearn.mixture import GaussianMixture

from langchain_core.runnables import RunnablePassthrough
from langchain_chroma import Chroma




def global_cluster_embeddings(
    embeddings: np.ndarray,
    dim: int,
    n_neighbors: Optional[int] = None,
    metric: str = "cosine",
) -> np.ndarray:
    if n_neighbors is None:
        n_neighbors = int((len(embeddings) - 1) ** 0.5)
    return umap.UMAP(
        n_neighbors=n_neighbors, n_components=dim, metric=metric
    ).fit_transform(embeddings)


def local_cluster_embeddings(
    embeddings: np.ndarray, dim: int, num_neighbors: int = 10, metric: str = "cosine"
) -> np.ndarray:
    return umap.UMAP(
        n_neighbors=num_neighbors, n_components=dim, metric=metric
    ).fit_transform(embeddings)


def get_optimal_clusters(
    embeddings: np.ndarray, max_clusters: int = 50, random_state: int = 200
) -> int:
    max_clusters = min(max_clusters, len(embeddings))
    n_clusters = np.arange(1, max_clusters)
    bics = []
    for n in n_clusters:
        gm = GaussianMixture(n_components=n, random_state=random_state)
        gm.fit(embeddings)
        bics.append(gm.bic(embeddings))
    return n_clusters[np.argmin(bics)]


def GMM_cluster(embeddings: np.ndarray, threshold: float, random_state: int = 0):
    n_clusters = get_optimal_clusters(embeddings, random_state = 200)
    gm = GaussianMixture(n_components=n_clusters, random_state=random_state)
    gm.fit(embeddings)
    probs = gm.predict_proba(embeddings)
    labels = [np.where(prob > threshold)[0] for prob in probs]
    return labels, n_clusters


def perform_clustering(
    embeddings: np.ndarray,
    dim: int,
    threshold: float,
) -> List[np.ndarray]:
    if len(embeddings) <= dim + 1:
        # Avoid clustering when there's insufficient data
        return [np.array([0]) for _ in range(len(embeddings))]

    # Global dimensionality reduction
    reduced_embeddings_global = global_cluster_embeddings(embeddings, dim)
    # Global clustering
    global_clusters, n_global_clusters = GMM_cluster(
        reduced_embeddings_global, threshold
    )

    all_local_clusters = [np.array([]) for _ in range(len(embeddings))]
    total_clusters = 0

    # Iterate through each global cluster to perform local clustering
    for i in range(n_global_clusters):
        # Extract embeddings belonging to the current global cluster
        global_cluster_embeddings_ = embeddings[
            np.array([i in gc for gc in global_clusters])
        ]

        if len(global_cluster_embeddings_) == 0:
            continue
        if len(global_cluster_embeddings_) <= dim + 1:
            # Handle small clusters with direct assignment
            local_clusters = [np.array([0]) for _ in global_cluster_embeddings_]
            n_local_clusters = 1
        else:
            # Local dimensionality reduction and clustering
            reduced_embeddings_local = local_cluster_embeddings(
                global_cluster_embeddings_, dim
            )
            local_clusters, n_local_clusters = GMM_cluster(
                reduced_embeddings_local, threshold
            )

        # Assign local cluster IDs, adjusting for total clusters already processed
        for j in range(n_local_clusters):
            local_cluster_embeddings_ = global_cluster_embeddings_[
                np.array([j in lc for lc in local_clusters])
            ]
            indices = np.where(
                (embeddings == local_cluster_embeddings_[:, None]).all(-1)
            )[1]
            for idx in indices:
                all_local_clusters[idx] = np.append(
                    all_local_clusters[idx], j + total_clusters
                )

        total_clusters += n_local_clusters

    return all_local_clusters

def embed(embd,texts):
    text_embeddings = embd.embed_documents(texts)
    text_embeddings_np = np.array(text_embeddings)
    return text_embeddings_np

def embed_cluster_texts(embd,texts):
    text_embeddings_np = embed(embd,texts)  # Generate embeddings
    cluster_labels = perform_clustering(
        text_embeddings_np, 10, 0.1
    )  # Perform clustering on the embeddings
    df = pd.DataFrame()  # Initialize a DataFrame to store the results
    df["text"] = texts  # Store original texts
    df["embd"] = list(text_embeddings_np)  # Store embeddings as a list in the DataFrame
    df["cluster"] = cluster_labels  # Store cluster labels
    return df

def fmt_txt(df: pd.DataFrame) -> str:
    unique_txt = df["text"].tolist()
    return "--- --- \n --- --- ".join(unique_txt)


def embed_cluster_summarize_texts(model,embd,
    texts: List[str], level: int
) -> Tuple[pd.DataFrame, pd.DataFrame]:
    df_clusters = embed_cluster_texts(embd,texts)

    # Prepare to expand the DataFrame for easier manipulation of clusters
    expanded_list = []

    # Expand DataFrame entries to document-cluster pairings for straightforward processing
    for index, row in df_clusters.iterrows():
        for cluster in row["cluster"]:
            expanded_list.append(
                {"text": row["text"], "embd": row["embd"], "cluster": cluster}
            )

    # Create a new DataFrame from the expanded list
    expanded_df = pd.DataFrame(expanded_list)

    # Retrieve unique cluster identifiers for processing
    all_clusters = expanded_df["cluster"].unique()
    # Summarization
    template = """Bạn là một chatbot hỗ trợ tuyển sinh và sinh viên đại học, hãy tóm tắt chi tiết tài liệu quy chế dưới đây.
    Đảm bảo rằng nội dung tóm tắt giúp người dùng hiểu rõ các quy định và quy trình liên quan đến tuyển sinh hoặc đào tạo tại đại học.
    Tài liệu:
    {context}
    """
    prompt = ChatPromptTemplate.from_template(template)
    chain = prompt | model | StrOutputParser()

    summaries = []
    for i in all_clusters:
        df_cluster = expanded_df[expanded_df["cluster"] == i]
        formatted_txt = fmt_txt(df_cluster)
        summaries.append(chain.invoke({"context": formatted_txt}))
    df_summary = pd.DataFrame(
        {
            "summaries": summaries,
            "level": [level] * len(summaries),
            "cluster": list(all_clusters),
        }
    )
    return df_clusters, df_summary

def recursive_embed_cluster_summarize(model,embd,
    texts: List[str], level: int = 1, n_levels: int = 3
) -> Dict[int, Tuple[pd.DataFrame, pd.DataFrame]]:
    results = {}  
    df_clusters, df_summary = embed_cluster_summarize_texts(model,embd,texts, level)

    results[level] = (df_clusters, df_summary)

    unique_clusters = df_summary["cluster"].nunique()
    if level < n_levels and unique_clusters > 1:
        new_texts = df_summary["summaries"].tolist()
        next_level_results = recursive_embed_cluster_summarize(model,embd,
            new_texts, level + 1, n_levels
        )
        results.update(next_level_results)

    return results



page = st.title("Chat with AskUSTH")

if "gemini_api" not in st.session_state:
    st.session_state.gemini_api = None

if "rag" not in st.session_state:
    st.session_state.rag = None
    
if "llm" not in st.session_state:
    st.session_state.llm = None

@st.cache_resource
def get_chat_google_model(api_key):
    os.environ["GOOGLE_API_KEY"] = api_key
    return ChatGoogleGenerativeAI(
        model="gemini-1.5-flash",
        temperature=0,
        max_tokens=None,
        timeout=None,
        max_retries=2,
    )

@st.cache_resource
def get_embedding_model():
    model_name = "bkai-foundation-models/vietnamese-bi-encoder"
    model_kwargs = {'device': 'cpu'}
    encode_kwargs = {'normalize_embeddings': False}
    
    model = HuggingFaceEmbeddings(
        model_name=model_name,
        model_kwargs=model_kwargs,
        encode_kwargs=encode_kwargs
    )   
    return model

if "embd" not in st.session_state:
    st.session_state.embd = get_embedding_model()

if "save_dir" not in st.session_state:
    st.session_state.save_dir = None 

if "uploaded_files" not in st.session_state:
    st.session_state.uploaded_files = set()
    
@st.dialog("Setup Gemini")
def vote():
    st.markdown(
        """
        Để sử dụng Google Gemini, bạn cần cung cấp API key. Tạo key của bạn [tại đây](https://ai.google.dev/gemini-api/docs/get-started/tutorial?lang=python&hl=vi) và dán vào bên dưới.
        """
    )
    key = st.text_input("Key:", "")
    if st.button("Save") and key != "":
        st.session_state.gemini_api = key
        st.rerun()  

if st.session_state.gemini_api is None:
    vote()
else:
    os.environ["GOOGLE_API_KEY"] = st.session_state.gemini_api 
    st.session_state.model = get_chat_google_model(st.session_state.gemini_api)

if st.session_state.save_dir is None:
    save_dir = "./Documents"
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    st.session_state.save_dir = save_dir
    
def load_txt(file_path):
    loader_sv = TextLoader(file_path=file_path, encoding="utf-8")
    doc = loader_sv.load()
    return doc


with st.sidebar:
    uploaded_files = st.file_uploader("Chọn file CSV", accept_multiple_files=True, type=["txt"])   
    if st.session_state.gemini_api:
        if uploaded_files:
            documents = []
            uploaded_file_names = set()
            new_docs = False
            for uploaded_file in uploaded_files:
                uploaded_file_names.add(uploaded_file.name)
                if uploaded_file.name not in st.session_state.uploaded_files:
                    file_path = os.path.join(st.session_state.save_dir, uploaded_file.name)
                    with open(file_path, mode='wb') as w:
                        w.write(uploaded_file.getvalue())
                else:
                    continue

                new_docs = True
                
                doc = load_txt(file_path)
                
                documents.extend([*doc])
                
            if new_docs:  
                st.session_state.uploaded_files = uploaded_file_names
                st.session_state.rag = None
        else:
            st.session_state.uploaded_files = set()
            st.session_state.rag = None

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

@st.cache_resource
def compute_rag_chain(_model, _embd, docs_texts):
    results = recursive_embed_cluster_summarize(_model, _embd, docs_texts, level=1, n_levels=3)
    all_texts = docs_texts.copy()
    for level in sorted(results.keys()):
        summaries = results[level][1]["summaries"].tolist()
        all_texts.extend(summaries)
    vectorstore = Chroma.from_texts(texts=all_texts, embedding=_embd)
    retriever = vectorstore.as_retriever()
    template = """
        Bạn là một trợ lí AI hỗ trợ tuyển sinh và sinh viên. \n
        Hãy trả lời câu hỏi chính xác, tập trung vào thông tin liên quan đến câu hỏi. \n
        Nếu bạn không biết câu trả lời, hãy nói không biết, đừng cố tạo ra câu trả lời.\n
        Dưới đây là thông tin liên quan mà bạn cần sử dụng tới:\n
        {context}\n
        hãy trả lời:\n
        {question}
        """
    prompt = PromptTemplate(template=template, input_variables=["context", "question"])
    rag_chain = (
        {"context": retriever | format_docs, "question": RunnablePassthrough()}
        | prompt
        | _model
        | StrOutputParser()
    )
    return rag_chain

@st.dialog("Setup RAG")
def load_rag():
    docs_texts = [d.page_content for d in documents]
    st.session_state.rag = compute_rag_chain(st.session_state.model, st.session_state.embd, docs_texts)
    st.rerun()  

if st.session_state.uploaded_files and st.session_state.gemini_api:
    if st.session_state.gemini_api is not None:
            if st.session_state.rag is None:
                load_rag()

if st.session_state.gemini_api is not None and st.session_state.gemini_api:
    if st.session_state.llm is None:
        mess = ChatPromptTemplate.from_messages(
            [
                (
                    "system",
                    "Bản là một trợ lí AI hỗ trợ tuyển sinh và sinh viên",
                ),
                ("human", "{input}"),
            ]
        )
        chain = mess | st.session_state.model
        st.session_state.llm = chain

if "chat_history" not in st.session_state:
    st.session_state.chat_history = []

for message in st.session_state.chat_history:
    with st.chat_message(message["role"]):
        st.write(message["content"])

prompt = st.chat_input("Bạn muốn hỏi gì?")
if st.session_state.gemini_api:
    if prompt:
        st.session_state.chat_history.append({"role": "user", "content": prompt})
            
        with st.chat_message("user"):
            st.write(prompt)
            
        with st.chat_message("assistant"):
            if st.session_state.rag is not None:
                try:
                    respone = st.session_state.rag.invoke(prompt)
                    st.write(respone)
                except:
                    respone = "Lỗi Gemini, load lại trang và nhập lại key"
                    st.write(respone)
            else: 
                try:                 
                    ans = st.session_state.llm.invoke(prompt)
                    respone = ans.content
                    st.write(respone)
                except:
                    respone = "Lỗi Gemini, load lại trang và nhập lại key"
                    st.write(respone)
                
        st.session_state.chat_history.append({"role": "assistant", "content": respone})