causev / plot.py
norygano's picture
Charts
45d0933
raw
history blame
7.2 kB
import pandas as pd
import plotly.express as px
import os
import umap
from sklearn.preprocessing import StandardScaler
def indicator_chart(chart_type='overall'):
data_file = os.path.join('data', 'indicator_overview.tsv')
df = pd.read_csv(data_file, sep='\t')
if chart_type == 'overall':
df_filtered = df[df['Indicator'] == 'Total with Indicators'].copy()
total_sentences_per_subfolder = df.groupby('Subfolder')['Total Sentences'].first().to_dict()
df_filtered['Total Sentences'] = df_filtered['Subfolder'].map(total_sentences_per_subfolder)
df_filtered['Indicator_Share'] = df_filtered['Count'] / df_filtered['Total Sentences']
df_filtered['Indicator_Share_Text'] = (df_filtered['Indicator_Share'] * 100).round(2).astype(str) + '%'
fig = px.bar(
df_filtered,
x='Subfolder',
y='Indicator_Share',
labels={'Indicator_Share': 'Share of Sentences with Indicators', 'Subfolder': ''},
color='Subfolder',
text='Indicator_Share_Text',
color_discrete_sequence=px.colors.qualitative.D3,
custom_data=['Total Sentences', 'Count']
)
fig.update_traces(
hovertemplate=(
'<b>%{x}</b><br>' +
'Share with Indicators: %{y:.1%}<br>' +
'Total Sentences: %{customdata[0]}<br>' +
'Sentences with Indicators: %{customdata[1]}<extra></extra>'
),
textposition='inside',
texttemplate='%{text}',
textfont=dict(color='rgb(255, 255, 255)'),
insidetextanchor='middle',
)
elif chart_type == 'individual':
min_value = 5
exclude_indicators = ['!besprechen']
df_filtered = df[~df['Indicator'].isin(['Total with Indicators', 'None'] + exclude_indicators)].copy()
indicators_meeting_threshold = df_filtered[df_filtered['Count'] >= min_value]['Indicator'].unique()
df_filtered = df_filtered[df_filtered['Indicator'].isin(indicators_meeting_threshold)]
df_filtered['Indicator'] = df_filtered['Indicator'].str.capitalize()
fig = px.bar(
df_filtered,
x='Subfolder',
y='Count',
color='Indicator',
barmode='group',
labels={'Count': 'Occurrences', 'Subfolder': '', 'Indicator': ' <b>INDICATOR</b>'},
color_discrete_sequence=px.colors.qualitative.D3
)
fig.update_traces(
texttemplate='%{y}',
textposition='inside',
textfont=dict(color='rgb(255, 255, 255)'),
)
fig.update_layout(
xaxis=dict(showline=True),
yaxis=dict(showticklabels=True, title=''),
bargap=0.05,
showlegend=(chart_type == 'individual')
)
return fig
def causes_chart():
data_file = os.path.join('data', 'indicator_cause_sentence_metadata.tsv')
df = pd.read_csv(data_file, sep='\t')
# Threshold
min_value = 30
df_filtered = df[df['cause'] != 'N/A'].copy()
causes_meeting_threshold = df_filtered.groupby('cause')['cause'].count()[lambda x: x >= min_value].index
df_filtered = df_filtered[df_filtered['cause'].isin(causes_meeting_threshold)]
df_filtered['cause'] = df_filtered['cause'].str.capitalize()
fig = px.bar(
df_filtered.groupby(['subfolder', 'cause']).size().reset_index(name='Count'),
x='subfolder',
y='Count',
color='cause',
barmode='group',
labels={'Count': 'Occurrences', 'subfolder': '', 'cause': '<b>CAUSE</b>'},
color_discrete_sequence=px.colors.qualitative.G10,
)
fig.update_layout(
xaxis=dict(showline=True),
yaxis=dict(showticklabels=True, title=''),
)
fig.update_traces(
texttemplate='%{y}',
textposition='inside',
textfont=dict(color='rgb(255, 255, 255)'),
insidetextanchor='middle',
)
return fig
def scatter_plot(include_modality=False):
data_file = os.path.join('data', 'feature_matrix.tsv')
df = pd.read_csv(data_file, sep='\t')
# Exclude sentences without any indicators (all indicator columns are 0), causes, or modalities (if included)
indicator_columns = [col for col in df.columns if col.startswith('indicator_')]
cause_columns = [col for col in df.columns if col.startswith('cause_')]
modality_columns = [col for col in df.columns if col.startswith('modality_')]
df_filtered = df[(df[indicator_columns].sum(axis=1) > 0) |
(df[cause_columns].sum(axis=1) > 0)]
# Exclude indicator '!besprechen'
indicator_columns = [col for col in indicator_columns if 'indicator_!besprechen' not in col]
# Limit indicators to those that occur at least 10 times
indicator_counts = df_filtered[indicator_columns].sum()
indicators_to_keep = indicator_counts[indicator_counts >= 10].index.tolist()
# Further filter to exclude entries without any valid indicators
df_filtered = df_filtered[df_filtered[indicators_to_keep].sum(axis=1) > 0]
# Exclude non-feature columns (metadata and sentence text) for dimensionality reduction
columns_to_drop = ['subfolder']
if not include_modality:
columns_to_drop += modality_columns # Drop modality columns if not included
features = df_filtered.drop(columns=columns_to_drop)
# Fill NaN values with 0 for the feature matrix
features_clean = features.fillna(0)
# Store the relevant metadata separately to ensure it is aligned correctly with the dimensionality reduction results
metadata = df_filtered[['subfolder']].copy()
# Remove the 'indicator_' prefix for indicators and ensure only indicators with at least 10 occurrences are included
metadata['indicator'] = df_filtered[indicators_to_keep].apply(lambda row: ', '.join([indicator.replace('indicator_', '') for indicator in indicators_to_keep if row[indicator] > 0]), axis=1)
# Collect all non-zero causes as a string (multiple causes per sentence)
metadata['cause'] = df_filtered[cause_columns].apply(lambda row: ', '.join([cause.replace('cause_', '') for cause in cause_columns if row[cause] > 0]), axis=1)
# Perform UMAP dimensionality reduction
reducer = umap.UMAP(n_components=2, random_state=42, n_neighbors=50, metric='cosine')
reduced_features = reducer.fit_transform(features_clean)
df_reduced = pd.DataFrame(reduced_features, columns=['Component 1', 'Component 2'])
df_reduced = pd.concat([df_reduced, metadata.reset_index(drop=True)], axis=1)
# Plotting the scatter plot with Plotly Express
hover_data = {'cause'}
if include_modality:
hover_data['Modality'] = True
fig = px.scatter(
df_reduced,
x='Component 1',
y='Component 2',
color='subfolder',
hover_data=hover_data,
labels={'Component 1': 'UMAP Dim 1', 'Component 2': 'UMAP Dim 2'},
color_discrete_sequence=px.colors.qualitative.Plotly
)
fig.update_layout(
xaxis=dict(showgrid=False),
yaxis=dict(showgrid=False),
showlegend=True
)
return fig