Spaces:
Sleeping
Sleeping
File size: 25,981 Bytes
d9adb99 f0b3888 d9adb99 f0b3888 d9adb99 f0b3888 7cb2bf1 f0b3888 1bb8495 f0b3888 d9adb99 f0b3888 6ca3666 f0b3888 6ca3666 f0b3888 bd86b7d f0b3888 2a3ca72 f0b3888 d9adb99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
# File: app.py
import streamlit as st
from PIL import Image, ImageDraw, ImageFont, ExifTags
import requests
from io import BytesIO
import cv2
import numpy as np
import pandas as pd
from skimage.metrics import structural_similarity as ssim
import fitz # PyMuPDF for PDF handling
import docx # For handling Word documents
from difflib import HtmlDiff, SequenceMatcher # For text comparison
import os
import logging
import base64
import zipfile
from typing import Dict
from deepface import DeepFace # For deepfake detection
import pytesseract # For OCR in watermark detection
# Page configuration with custom theme
st.set_page_config(
page_title="Centurion", # Title of the web app
page_icon="https://raw.githubusercontent.com/noumanjavaid96/ai-as-an-api/refs/heads/master/image%20(39).png", # Icon displayed in the browser tab
layout="wide", # Layout of the app# Initial state of the sidebar
)
# Apply custom theme using CSS
st.markdown(
"""
<style>
{
--primary-color: #aba9aa; # Primary color for the theme
--background-color: #fdfdfd; # Background color
--secondary-background-color: #4a4c56; # Secondary background color
--text-color: #030104; # Text color
}
body {
background-color: var(--background-color); # Set background color
}
</style>
""",
unsafe_allow_html=True # Allow HTML in markdown
)
# Display the title with the icon
st.markdown(
"""
<div class="title-container">
<img class="title-icon" src="https://raw.githubusercontent.com/noumanjavaid96/ai-as-an-api/refs/heads/master/image%20(39).png" alt="Icon" width="50" height="50">
<div class="title-text" style="font-size: 36px; font-weight: bold; color: var(--text-color);">Centurion</div>
</div>
""",
unsafe_allow_html=True # Allow HTML in markdown
)
# Configure logging
logging.basicConfig(level=logging.INFO) # Set logging level to INFO
logger = logging.getLogger(__name__) # Create a logger
UPLOAD_DIR = "uploaded_files" # Directory to store uploaded files
NVIDIA_API_KEY = "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" # Store API key securely
# Create upload directory if it doesn't exist
if not os.path.exists(UPLOAD_DIR):
os.makedirs(UPLOAD_DIR) # Create the directory
class NVIDIAOCRHandler:
def __init__(self):
self.api_key = NVIDIA_API_KEY # Initialize API key
self.nvai_url = "https://ai.api.nvidia.com/v1/cv/nvidia/ocdrnet" # NVIDIA OCR API URL
self.headers = {"Authorization": f"Bearer {self.api_key}"} # Set headers for API requests
def process_image(self, file_path: str) -> str:
try:
with open(file_path, "rb") as image_file: # Open the image file
files = {'image': image_file} # Prepare file for upload
response = requests.post(self.nvai_url, headers=self.headers, files=files) # Send POST request
response.raise_for_status() # Raise an error for bad responses
result = response.json() # Parse JSON response
return result.get("text", "") # Return extracted text
except Exception as e:
st.error(f"Error processing image: {str(e)}") # Display error message
return "" # Return empty string on error
def save_uploaded_file(uploaded_file):
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name) # Create file path
with open(file_path, "wb") as f: # Open file for writing
f.write(uploaded_file.getbuffer()) # Write uploaded file to disk
return file_path # Return the file path
def upload_asset(input_data: bytes, description: str) -> str:
try:
assets_url = "https://api.nvcf.nvidia.com/v2/nvcf/assets" # NVIDIA asset upload URL
headers = {
"Authorization": f"Bearer {NVIDIA_API_KEY}", # Set authorization header
"Content-Type": "application/json", # Set content type
"accept": "application/json", # Accept JSON response
}
payload = {"contentType": "image/jpeg", "description": description} # Prepare payload for upload
response = requests.post(assets_url, headers=headers, json=payload)
response.raise_for_status()
asset_url = response.json()["uploadUrl"]
asset_id = response.json()["assetId"]
response = requests.put(
asset_url,
data=input_data,
headers={"x-amz-meta-nvcf-asset-description": description, "content-type": "image/jpeg"},
timeout=300,
)
response.raise_for_status()
return asset_id
except Exception as e:
st.error(f"Error uploading asset: {str(e)}")
return ""
def extract_text_pdf(file_path):
doc = fitz.open(file_path)
text = ""
for page in doc:
text += page.get_text()
return text
def extract_text_word(file_path):
doc = docx.Document(file_path)
text = "\n".join([para.text for para in doc.paragraphs])
return text
def compare_texts(text1, text2):
differ = HtmlDiff()
return differ.make_file(
text1.splitlines(), text2.splitlines(),
fromdesc="Original", todesc="Modified", context=True, numlines=2
)
def calculate_similarity(text1, text2):
matcher = SequenceMatcher(None, text1, text2)
return matcher.ratio()
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s: %(message)s'
)
logger = logging.getLogger(__name__)
class NvidiaDeepfakeDetector:
def __init__(self):
"""
Initialize Deepfake Detection with configuration
"""
self.api_key = f"Bearer NVIDIA_API_KEY"
self.upload_dir = os.getenv('UPLOAD_DIR', '/tmp')
self.max_image_size = 5 * 1024 * 1024 # 5MB
self.invoke_url = "https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection"
# Validate critical configurations
self._validate_config()
def _validate_config(self):
"""
Validate critical configuration parameters
"""
if not self.api_key:
raise ValueError("NVIDIA API Key is not configured")
if not os.path.exists(self.upload_dir):
os.makedirs(self.upload_dir, exist_ok=True)
def validate_image(self, image_bytes: bytes) -> bool:
"""
Validate image before processing
Args:
image_bytes (bytes): Image data
Returns:
bool: Image validation status
"""
try:
# Check image size
if len(image_bytes) > self.max_image_size:
st.error(f"Image exceeds maximum size of {self.max_image_size} bytes")
return False
# Try opening image
Image.open(BytesIO(image_bytes))
return True
except Exception as e:
st.error(f"Image validation failed: {e}")
return False
def upload_asset(self, path: str, desc: str) -> str:
"""
Upload asset to NVIDIA's asset management system
Args:
path (str): Image file path
desc (str): Asset description
Returns:
str: Asset ID
"""
try:
assets_url = "https://api.nvcf.nvidia.com/v2/nvcf/assets"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
"accept": "application/json",
}
# Create asset
payload = {
"contentType": "image/png",
"description": desc
}
response = requests.post(assets_url, headers=headers, json=payload, timeout=30)
response.raise_for_status()
upload_url = response.json()["uploadUrl"]
asset_id = response.json()["assetId"]
# Upload image
with open(path, "rb") as input_data:
upload_response = requests.put(
upload_url,
data=input_data,
headers={"Content-Type": "image/png"},
timeout=300
)
upload_response.raise_for_status()
return asset_id
except requests.exceptions.RequestException as e:
logger.error(f"Asset upload failed: {e}")
st.error("Failed to upload image asset")
return ""
"""
Detect deepfake using NVIDIA API
Args:
image_bytes (bytes): Image data
Returns:
Optional[Dict]: Detection results
"""
# Validate image
if not self.validate_image(image_bytes):
return None
try:
# Temporary image path
temp_path = os.path.join(self.upload_dir, "temp_deepfake_image.png")
with open(temp_path, "wb") as f:
f.write(image_bytes)
# Encode image
image_b64 = base64.b64encode(image_bytes).decode()
# Payload preparation
if len(image_b64) < 180_000:
payload = {"input": [f"data:image/png;base64,{image_b64}"]}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
"Accept": "application/json",
}
else:
# Large image asset upload
asset_id = self.upload_asset(temp_path, "Deepfake Detection")
payload = {"input": [f"data:image/png;asset_id,{asset_id}"]}
headers = {
"Content-Type": "application/json",
"NVCF-INPUT-ASSET-REFERENCES": asset_id,
"Authorization": f"Bearer {self.api_key}",
}
# API Call
response = requests.post(self.invoke_url, headers=headers, json=payload)
response.raise_for_status()
# Clean up temporary file
os.remove(temp_path)
return response.json()
except requests.exceptions.RequestException as e:
logger.error(f"Deepfake detection error: {e}")
st.error("Deepfake detection failed")
return None
except Exception as e:
logger.error(f"Unexpected error: {e}")
st.error("An unexpected error occurred")
return None
# Streamlit Integration Function
def nvidia_deepfake_detection_app():
st.header("π΅οΈ Deepfake Detection")
# Initialize detector
detector = NvidiaDeepfakeDetector()
# File uploader
uploaded_file = st.file_uploader(
"Upload an image",
type=["jpg", "jpeg", "png"],
key="deepfake_nvidia"
)
if uploaded_file is not None:
# Read image
image_bytes = uploaded_file.getvalue()
image = Image.open(BytesIO(image_bytes))
# Layout
col1, col2 = st.columns([2, 1])
with col1:
st.image(image, caption="Uploaded Image", use_column_width=True)
with col2:
st.write("### Detection Results")
# Detect deepfake
with st.spinner("Analyzing image..."):
result = detector.detect_deepfake(image_bytes)
# Process and display results
if result and 'data' in result and result['data']: # Check data list too
deepfake_data = result['data'][0] # Access the data list inside the 'data' key
is_deepfake = deepfake_data.get('isDeepfake', False) # Access isDeepfake from deepfake_data
confidence = deepfake_data.get('confidence', 0.0)
with col2:
# Confidence metrics
st.metric(
label="Deepfake Probability",
value=f"{confidence:.2f}%",
delta="High Risk" if confidence >= 70 else "Low Risk"
)
# Risk assessment
if is_deepfake > 90:
st.error("π¨ HIGH RISK: Likely a Deepfake")
elif confidence > 70:
st.warning("β οΈ MODERATE RISK: Potential Deepfake")
else:
st.success("β
LOW RISK: Likely Authentic")
else:
st.error("Unable to perform deepfake detection")
# Main execution
def detect_watermark(image, text):
try:
gray_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
detected_text = pytesseract.image_to_string(gray_image)
return text.strip().lower() in detected_text.strip().lower()
except Exception as e:
st.error(f"Error in watermark detection: {str(e)}")
return False
def get_metadata(image):
exif_data = {}
info = image.getexif()
if info:
for tag, value in info.items():
decoded = ExifTags.TAGS.get(tag, tag)
exif_data[decoded] = value
return exif_data
def compare_metadata(meta1, meta2):
keys = set(meta1.keys()).union(set(meta2.keys()))
data = []
for key in keys:
value1 = meta1.get(key, "Not Available")
value2 = meta2.get(key, "Not Available")
if value1 != value2:
data.append({"Metadata Field": key, "Original Image": value1, "Compared Image": value2})
if data:
df = pd.DataFrame(data)
return df
else:
return None
def detect_deepfake(image):
try:
analysis = DeepFace.analyze(img_path=np.array(image), actions=['emotion'], enforce_detection=False)
if analysis and 'emotion' in analysis:
return "Real Face Detected", 0.99
else:
return "No Face Detected", 0.0
except Exception as e:
st.error(f"Error in deepfake detection: {str(e)}")
return "Error", 0.0
def image_comparison_app():
st.header("π Image Analysis for Differences")
st.write("Upload two images to compare them and find differences.")
col1, col2 = st.columns(2)
with col1:
st.subheader("Original Image")
uploaded_file1 = st.file_uploader("Choose the original image", type=["png", "jpg", "jpeg"], key="comp1")
with col2:
st.subheader("Image to Compare")
uploaded_file2 = st.file_uploader("Choose the image to compare", type=["png", "jpg", "jpeg"], key="comp2")
if uploaded_file1 and uploaded_file2:
image1 = Image.open(uploaded_file1)
image2 = Image.open(uploaded_file2)
img1 = cv2.cvtColor(np.array(image1), cv2.COLOR_RGB2BGR)
img2 = cv2.cvtColor(np.array(image2), cv2.COLOR_RGB2BGR)
if img1.shape != img2.shape:
st.warning("Images are not the same size. Resizing the second image to match the first.")
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
score, diff = ssim(gray1, gray2, full=True)
st.write(f"**Structural Similarity Index (SSIM): {score:.4f}**")
diff = (diff * 255).astype("uint8")
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
img1_diff = img1.copy()
img2_diff = img2.copy()
for cnt in contours:
x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(img1_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.rectangle(img2_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
img1_display = cv2.cvtColor(img1_diff, cv2.COLOR_BGR2RGB)
img2_display = cv2.cvtColor(img2_diff, cv2.COLOR_BGR2RGB)
diff_display = cv2.cvtColor(diff, cv2.COLOR_GRAY2RGB)
thresh_display = cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB)
st.write("## Results")
st.write("Differences are highlighted in red boxes.")
st.image([img1_display, img2_display], caption=["Original Image with Differences", "Compared Image with Differences"], width=300)
st.write("## Difference Image")
st.image(diff_display, caption="Difference Image", width=300)
st.write("## Thresholded Difference Image")
st.image(thresh_display, caption="Thresholded Difference Image", width=300)
else:
st.info("Please upload both images.")
def image_comparison_and_watermarking_app():
st.header("π§ Watermark Adding and Detecting")
st.write("Upload an image to add a watermark, and detect if a watermark is present.")
def add_watermark(image, text):
txt = Image.new('RGBA', image.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(txt)
font_size = max(20, image.size[0] // 20)
try:
font = ImageFont.truetype("arial.ttf", font_size)
except IOError:
font = ImageFont.load_default() # Fallback if font not found
bbox = font.getbbox(text)
textwidth = bbox[2] - bbox[0]
textheight = bbox[3] - bbox[1]
x = image.size[0] - textwidth - 10
y = image.size[1] - textheight - 10
draw.text((x, y), text, font=font, fill=(255, 255, 255, 128))
watermarked = Image.alpha_composite(image.convert('RGBA'), txt)
return watermarked.convert('RGB')
uploaded_file = st.file_uploader("Choose an image", type=["png", "jpg", "jpeg"], key="wm1")
watermark_text = st.text_input("Enter watermark text:", value="Sample Watermark")
if uploaded_file:
image = Image.open(uploaded_file).convert("RGB")
st.image(image, caption="Original Image", width=300)
st.write("### Watermarked Image")
watermarked_image = add_watermark(image, watermark_text)
st.image(watermarked_image, caption="Watermarked Image", width=300)
st.write("### Watermark Detection")
if detect_watermark(watermarked_image, watermark_text):
st.success("Watermark detected in the image.")
else:
st.warning("Watermark not detected in the image.")
st.write("### Metadata")
metadata = get_metadata(image)
st.write(metadata if metadata else "No metadata available.")
else:
st.info("Please upload an image.")
def process_deepfake_detection_nvidia(image_bytes):
header_auth = f"Bearer {NVIDIA_API_KEY}"
invoke_url = "https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection"
try:
if image_bytes is not None:
image_b64 = base64.b64encode(image_bytes).decode()
payload = {"input": [f"data:image/jpeg;base64,{image_b64}"]}
headers = {
"Content-Type": "application/json",
"Authorization": header_auth,
"Accept": "application/json",
}
response = requests.post(invoke_url, headers=headers, json= payload)
response.raise_for_status()
response_json = response.json()
return response_json # Return the result
except requests.exceptions.RequestException as e:
st.error(f"Error with NVIDIA API: {e}")
return None
def nvidia_deepfake_detection_app():
st.header("NVIDIA Deepfake Detection")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"], key="deepfake_nvidia")
if uploaded_file is not None:
image_bytes = uploaded_file.getvalue()
image = Image.open(BytesIO(image_bytes))
st.image(image, caption="Uploaded Image", use_container_width=True)
col1, col2 = st.columns([2, 1])
with col1:
# Display original image
st.image(image, caption="Uploaded Image", use_container_width=True)
with col2:
# Placeholder for detection results
st.write("### Detection Results")
# Perform deepfake detection
with st.spinner("Analyzing image for deepfake..."):
result = process_deepfake_detection_nvidia(image_bytes)
if result and 'data' in result and result['data']:
deepfake_data = result['data'][0]
# Deepfake confidence
is_deepfake = deepfake_data.get('isDeepfake', 0)
deepfake_confidence = is_deepfake * 100
# Face detection confidence
face_confidence = deepfake_data.get('confidence', 0) * 100
# Update the second column with detailed results
with col2:
# Deepfake Probability Card
st.markdown("""
<div style="background-color:#f0f2f6;padding:20px;border-radius:10px;">
<h3 style="color:#333;margin-bottom:15px;">Deepfake Analysis</h3>
""", unsafe_allow_html=True)
# Deepfake Confidence Metric
st.metric(
label="Deepfake Probability",
value=f"{deepfake_confidence:.1f}%",
delta="High Risk" if deepfake_confidence > 70 else "Low Risk"
)
# Face Detection Confidence Metric
st.metric(
label="Face Detection Confidence",
value=f"{face_confidence:.1f}%"
)
# Risk Assessment
if deepfake_confidence > 90:
st.error("π¨ HIGH RISK: Likely a Deepfake")
elif deepfake_confidence > 70:
st.warning("β οΈ MODERATE RISK: Potential Deepfake")
else:
st.success("β
LOW RISK: Likely Authentic")
st.markdown("</div>", unsafe_allow_html=True)
# Detailed Explanation
st.markdown("### Detailed Analysis")
# Create expandable sections for more information
with st.expander("Deepfake Detection Explanation"):
st.write("""
- **Deepfake Probability**: Indicates the likelihood of the image being artificially generated.
- **Face Detection Confidence**: Measures the model's confidence in detecting a face in the image.
- High probabilities suggest potential manipulation.
""")
# Raw JSON for technical users
with st.expander("Technical Details"):
if result:
st.json(result)
else:
st.error("Unable to perform deepfake detection. Please try another image.")
else:
st.info("Please upload an image to perform deepfake detection.")
def document_comparison_tool():
st.header("π Document In-Depth Comparison")
st.markdown("Compare documents and detect changes with OCR highlighting.")
col1, col2 = st.columns(2)
with col1:
st.markdown("### Original Document")
original_file = st.file_uploader(
"Upload original document",
type=["pdf", "docx", "jpg", "jpeg", "png"],
key='doc_original_file',
help="Supported formats: PDF, DOCX, JPG, PNG"
)
with col2:
st.markdown("### Modified Document")
modified_file = st.file_uploader(
"Upload modified document",
type=["pdf", "docx", "jpg", "jpeg", "png"],
key='doc_modified_file',
help="Supported formats: PDF, DOCX, JPG, PNG"
)
if original_file and modified_file:
ocr_handler = NVIDIAOCRHandler()
original_file_path = save_uploaded_file(original_file)
modified_file_path = save_uploaded_file(modified_file)
original_ext = os.path.splitext(original_file.name)[1].lower()
modified_ext = os.path.splitext(modified_file.name)[1].lower()
if original_ext in ['.jpg', '.jpeg', '.png']:
original_text = ocr_handler.process_image(original_file_path)
elif original_ext == '.pdf':
original_text = extract_text_pdf(original_file_path)
else:
original_text = extract_text_word(original_file_path)
if modified_ext in ['.jpg', '.jpeg', '.png']:
modified_text = ocr_handler.process_image(modified_file_path)
elif modified_ext == '.pdf':
modified_text = extract_text_pdf(modified_file_path)
else:
modified_text = extract_text_word(modified_file_path)
similarity_score = calculate_similarity(original_text, modified_text)
st.markdown("### π Analysis Results")
metrics_col1, metrics_col2 = st.columns(2)
with metrics_col1:
st.metric("Similarity Score", f"{similarity_score:.2%}")
with metrics_col2:
st.metric("Changes Detected", "Yes" if similarity_score < 1 else "No")
st.markdown("### π Detailed Comparison")
diff_html = compare_texts(original_text, modified_text)
st.components.v1.html(diff_html, height=600, scrolling=True)
st.markdown("### πΎ Download Results")
if st.button("Generate Report"):
st.success("Report generated successfully!")
st.download_button(
label="Download Report",
data=diff_html,
file_name="comparison_report.html",
mime="text/html"
)
else:
st.info("Please upload both documents to begin comparison.")
def main():
st.write("""
""")
tabs = st.tabs([
"Image Comparison"
])
with tabs[0]:
image_comparison_app()
if __name__ == "__main__":
main()
|