Spaces:
Sleeping
Sleeping
import os | |
import subprocess | |
subprocess.run(["git", "lfs", "install"]) | |
subprocess.run(["git", "clone", "https://huggingface.co/K024/ChatGLM-6b-onnx-u8s8"]) | |
os.chdir("ChatGLM-6b-onnx-u8s8") | |
subprocess.run(["pip", "install", "-r", "requirements.txt"]) | |
from model import ChatGLMModel#, chat_template | |
model = ChatGLMModel() | |
# history = [] | |
max_tokens = 512 | |
temperature = 1.0 | |
top_p = 0.7 | |
top_k = 50 | |
from typing import Any, List, Mapping, Optional | |
from langchain.callbacks.manager import CallbackManagerForLLMRun | |
from langchain.llms.base import LLM | |
class CustomLLM(LLM): | |
model: ChatGLMModel | |
# history: List | |
def _llm_type(self) -> str: | |
return "custom" | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
) -> str: | |
if stop is not None: | |
raise ValueError("stop kwargs are not permitted.") | |
# prompt = chat_template(self.history, prompt) | |
for answer in self.model.generate_iterate(prompt, | |
max_generated_tokens=max_tokens, | |
top_k=top_k, | |
top_p=top_p, | |
temperature=temperature): | |
pass | |
# self.history = self.history + [(question, answer)] | |
return answer | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
return {"model": "ChatGLMModel"} | |
llm = CustomLLM(model=model) | |
import gradio as gr | |
from langchain.docstore.document import Document | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains.question_answering import load_qa_chain | |
# from langchain.embeddings import HuggingFaceEmbeddings | |
# from langchain.vectorstores import Chroma | |
# embeddings = HuggingFaceEmbeddings() | |
query = "總結並以點列形式舉出重點" | |
chain = load_qa_chain(llm, chain_type="map_reduce") | |
# chain = load_qa_chain(llm, chain_type="refine") | |
def greet(text): | |
docs = [Document(page_content=text)] | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1024, # 分割最大尺寸 | |
chunk_overlap=64, # 重复字数 | |
length_function=len | |
) | |
texts = text_splitter.split_documents(docs) | |
# docsearch = Chroma.from_texts(texts, embeddings).as_retriever() | |
# docs = docsearch.get_relevant_documents(query) | |
return chain.run(input_documents=texts, question=query) | |
iface = gr.Interface(fn=greet, | |
inputs=gr.Textbox(lines=20, | |
placeholder="Text Here..."), | |
outputs="text") | |
iface.launch() | |