Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,31 +10,6 @@ import streamlit as st
|
|
10 |
# Define Torch device. Enable CUDA if available.
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
-
# Have data for BertClass ready for both models
|
14 |
-
class BertClass(torch.nn.Module):
|
15 |
-
def __init__(self):
|
16 |
-
super(BertClass, self).__init__()
|
17 |
-
self.l1 = BertModel.from_pretrained(model_path)
|
18 |
-
self.dropout = torch.nn.Dropout(HEAD_DROP_OUT)
|
19 |
-
self.classifier = torch.nn.Linear(768, 6)
|
20 |
-
|
21 |
-
def forward(self, input_ids, attention_mask, token_type_ids):
|
22 |
-
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
23 |
-
hidden_state = output_1[0]
|
24 |
-
pooler = hidden_state[:, 0]
|
25 |
-
pooler = self.dropout(pooler)
|
26 |
-
output = self.classifier(pooler)
|
27 |
-
return output
|
28 |
-
|
29 |
-
class PretrainedBertClass(torch.nn.Module):
|
30 |
-
def __init__(self):
|
31 |
-
super(BertClass, self).__init__()
|
32 |
-
self.l1 = BertForSequenceClassification.from_pretrained(bert_path, num_labels=6)
|
33 |
-
|
34 |
-
def forward(self, input_ids, attention_mask, token_type_ids):
|
35 |
-
output = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
36 |
-
return output
|
37 |
-
|
38 |
# Read and format data.
|
39 |
tweets_raw = pd.read_csv("test.csv", nrows=20)
|
40 |
labels_raw = pd.read_csv("test_labels.csv", nrows=20)
|
@@ -45,17 +20,6 @@ label_vector = labels_raw[label_set].values.tolist()
|
|
45 |
tweet_df = tweets_raw[["comment_text"]]
|
46 |
tweet_df["labels"] = label_vector
|
47 |
|
48 |
-
# User selects model for front-end.
|
49 |
-
option = st.selectbox("Select a text analysis model:", ("BERT", "Fine-tuned BERT"))
|
50 |
-
|
51 |
-
bert_path = "bert-base-uncased"
|
52 |
-
if option == "BERT":
|
53 |
-
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
54 |
-
model = PretrainedBertClass()
|
55 |
-
else:
|
56 |
-
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
57 |
-
model = torch.load("pytorch_bert_toxic.bin", map_location=torch.device(device))
|
58 |
-
|
59 |
# Dataset for loading tables into DataLoader
|
60 |
class ToxicityDataset(Dataset):
|
61 |
def __init__(self, dataframe, tokenizer, max_len):
|
@@ -94,10 +58,47 @@ class ToxicityDataset(Dataset):
|
|
94 |
# Based on user model selection, prepare Dataset and DataLoader
|
95 |
MAX_LENGTH = 100
|
96 |
INFER_BATCH_SIZE = 128
|
|
|
97 |
infer_dataset = ToxicityDataset(tweet_df, tokenizer, MAX_LENGTH)
|
98 |
infer_params = {"batch_size": INFER_BATCH_SIZE, "shuffle": False}
|
99 |
infer_loader = DataLoader(infer_dataset, **infer_params)
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
# Freeze model and input tokens
|
102 |
def inference():
|
103 |
model.eval()
|
|
|
10 |
# Define Torch device. Enable CUDA if available.
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# Read and format data.
|
14 |
tweets_raw = pd.read_csv("test.csv", nrows=20)
|
15 |
labels_raw = pd.read_csv("test_labels.csv", nrows=20)
|
|
|
20 |
tweet_df = tweets_raw[["comment_text"]]
|
21 |
tweet_df["labels"] = label_vector
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Dataset for loading tables into DataLoader
|
24 |
class ToxicityDataset(Dataset):
|
25 |
def __init__(self, dataframe, tokenizer, max_len):
|
|
|
58 |
# Based on user model selection, prepare Dataset and DataLoader
|
59 |
MAX_LENGTH = 100
|
60 |
INFER_BATCH_SIZE = 128
|
61 |
+
HEAD_DROP_OUT = 0.4
|
62 |
infer_dataset = ToxicityDataset(tweet_df, tokenizer, MAX_LENGTH)
|
63 |
infer_params = {"batch_size": INFER_BATCH_SIZE, "shuffle": False}
|
64 |
infer_loader = DataLoader(infer_dataset, **infer_params)
|
65 |
|
66 |
+
# Have data for BertClass ready for both models
|
67 |
+
class BertClass(torch.nn.Module):
|
68 |
+
def __init__(self):
|
69 |
+
super(BertClass, self).__init__()
|
70 |
+
self.l1 = torch.load("pytorch_bert_toxic.bin", map_location=torch.device(device))
|
71 |
+
self.dropout = torch.nn.Dropout(HEAD_DROP_OUT)
|
72 |
+
self.classifier = torch.nn.Linear(768, 6)
|
73 |
+
|
74 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
75 |
+
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
76 |
+
hidden_state = output_1[0]
|
77 |
+
pooler = hidden_state[:, 0]
|
78 |
+
pooler = self.dropout(pooler)
|
79 |
+
output = self.classifier(pooler)
|
80 |
+
return output
|
81 |
+
|
82 |
+
class PretrainedBertClass(torch.nn.Module):
|
83 |
+
def __init__(self):
|
84 |
+
super(PretrainedBertClass, self).__init__()
|
85 |
+
self.l1 = BertForSequenceClassification.from_pretrained(bert_path, num_labels=6)
|
86 |
+
|
87 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
88 |
+
output = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
89 |
+
return output
|
90 |
+
|
91 |
+
# User selects model for front-end.
|
92 |
+
option = st.selectbox("Select a text analysis model:", ("BERT", "Fine-tuned BERT"))
|
93 |
+
|
94 |
+
bert_path = "bert-base-uncased"
|
95 |
+
if option == "BERT":
|
96 |
+
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
97 |
+
model = PretrainedBertClass()
|
98 |
+
else:
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
100 |
+
model = BertClass()
|
101 |
+
|
102 |
# Freeze model and input tokens
|
103 |
def inference():
|
104 |
model.eval()
|