loan_prediction / src /train.py
nullHawk's picture
done with v0
7eccd3a
#!/usr/bin/env python3
"""
Training script for Deep Loan Prediction Neural Network
Optimized for the best performing deep model architecture
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset, WeightedRandomSampler
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
import json
import os
import warnings
warnings.filterwarnings('ignore')
from model import (
LoanPredictionDeepANN,
load_processed_data,
calculate_class_weights,
evaluate_model,
plot_training_history,
plot_confusion_matrix,
model_summary
)
class FocalLoss(nn.Module):
"""Focal Loss for handling class imbalance"""
def __init__(self, alpha=2, gamma=2, logits=True):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.logits = logits
def forward(self, inputs, targets):
if self.logits:
BCE_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduce=False)
else:
BCE_loss = nn.functional.binary_cross_entropy(inputs, targets, reduce=False)
pt = torch.exp(-BCE_loss)
F_loss = self.alpha * (1-pt)**self.gamma * BCE_loss
return torch.mean(F_loss)
class DeepLoanTrainer:
"""Training pipeline for Deep Neural Network"""
def __init__(self, learning_rate=0.012, batch_size=1536, device=None):
self.learning_rate = learning_rate
self.batch_size = batch_size
# Set device
if device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = torch.device(device)
print(f"πŸš€ Using device: {self.device}")
# Initialize model
self.model = LoanPredictionDeepANN().to(self.device)
# Training history
self.train_losses = []
self.val_losses = []
self.train_accuracies = []
self.val_accuracies = []
def prepare_data(self, data_path='data/processed', validation_split=0.2):
"""Load and prepare data for training"""
print("πŸ“Š Loading processed data...")
X_train, y_train, X_test, y_test, feature_names = load_processed_data(data_path)
# Split training data into train/validation
X_train, X_val, y_train, y_val = train_test_split(
X_train, y_train, test_size=validation_split,
random_state=42, stratify=y_train
)
# Convert to PyTorch tensors
self.X_train = torch.FloatTensor(X_train).to(self.device)
self.y_train = torch.FloatTensor(y_train).unsqueeze(1).to(self.device)
self.X_val = torch.FloatTensor(X_val).to(self.device)
self.y_val = torch.FloatTensor(y_val).unsqueeze(1).to(self.device)
self.X_test = torch.FloatTensor(X_test).to(self.device)
self.y_test = torch.FloatTensor(y_test).unsqueeze(1).to(self.device)
# Store original numpy arrays for evaluation
self.X_test_np = X_test
self.y_test_np = y_test
self.feature_names = feature_names
# Create weighted sampler for imbalanced data
class_counts = np.bincount(y_train.astype(int))
class_weights = 1.0 / class_counts
sample_weights = class_weights[y_train.astype(int)]
sampler = WeightedRandomSampler(sample_weights, len(sample_weights))
# Create data loaders
train_dataset = TensorDataset(self.X_train, self.y_train)
val_dataset = TensorDataset(self.X_val, self.y_val)
self.train_loader = DataLoader(train_dataset, batch_size=self.batch_size, sampler=sampler)
self.val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
# Calculate class weights
self.class_weights = calculate_class_weights(y_train)
print(f"βœ… Data preparation complete:")
print(f" Training samples: {len(X_train):,}")
print(f" Validation samples: {len(X_val):,}")
print(f" Test samples: {len(X_test):,}")
print(f" Features: {len(feature_names)}")
print(f" Class weights: {self.class_weights}")
return self
def setup_training(self, weight_decay=1e-4):
"""Setup training configuration"""
# Optimizer
self.optimizer = optim.AdamW(
self.model.parameters(),
lr=self.learning_rate,
weight_decay=weight_decay,
betas=(0.9, 0.999)
)
# Learning rate scheduler
self.scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(
self.optimizer, T_0=20, T_mult=2, eta_min=1e-6
)
# Loss function - Focal Loss for imbalanced data
self.criterion = FocalLoss(alpha=2, gamma=2, logits=True)
print("βš™οΈ Training setup complete:")
print(f" Optimizer: AdamW (lr={self.learning_rate}, weight_decay={weight_decay})")
print(f" Scheduler: CosineAnnealingWarmRestarts")
print(f" Loss: Focal Loss (alpha=2, gamma=2)")
return self
def train_epoch(self):
"""Train for one epoch"""
self.model.train()
total_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(self.train_loader):
self.optimizer.zero_grad()
# Forward pass - model returns logits for deep ANN
output = self.model(data)
# Convert sigmoid output to logits for FocalLoss
# Since DeepANN returns sigmoid output, convert to logits
eps = 1e-7
output_clamped = torch.clamp(output, eps, 1 - eps)
logits = torch.log(output_clamped / (1 - output_clamped))
loss = self.criterion(logits, target)
loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.optimizer.step()
self.scheduler.step()
# Predictions
predicted = output > 0.5
total_loss += loss.item()
total += target.size(0)
correct += predicted.eq(target > 0.5).sum().item()
avg_loss = total_loss / len(self.train_loader)
accuracy = 100. * correct / total
return avg_loss, accuracy
def validate_epoch(self):
"""Validate for one epoch"""
self.model.eval()
total_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for data, target in self.val_loader:
# Forward pass
output = self.model(data)
# Convert sigmoid output to logits for FocalLoss
eps = 1e-7
output_clamped = torch.clamp(output, eps, 1 - eps)
logits = torch.log(output_clamped / (1 - output_clamped))
loss = self.criterion(logits, target)
predicted = output > 0.5
total_loss += loss.item()
total += target.size(0)
correct += predicted.eq(target > 0.5).sum().item()
avg_loss = total_loss / len(self.val_loader)
accuracy = 100. * correct / total
return avg_loss, accuracy
def train(self, num_epochs=200, early_stopping_patience=30, save_best=True):
"""Train the model"""
print(f"\nπŸ‹οΈ Starting training for {num_epochs} epochs...")
print("=" * 80)
best_val_loss = float('inf')
patience_counter = 0
best_accuracy = 0.0
for epoch in range(1, num_epochs + 1):
# Train
train_loss, train_acc = self.train_epoch()
# Validate
val_loss, val_acc = self.validate_epoch()
# Store history
self.train_losses.append(train_loss)
self.val_losses.append(val_loss)
self.train_accuracies.append(train_acc)
self.val_accuracies.append(val_acc)
# Print progress
if epoch == 1 or epoch % 10 == 0 or epoch == num_epochs:
lr = self.optimizer.param_groups[0]['lr']
print(f'Epoch {epoch:3d}/{num_epochs}: '
f'Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.1f}% | '
f'Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.1f}% | '
f'LR: {lr:.6f}')
# Early stopping based on validation accuracy (for better performance)
if val_acc > best_accuracy:
best_accuracy = val_acc
best_val_loss = val_loss
patience_counter = 0
if save_best:
self.save_model('best_deep_model.pth')
print(f"πŸ’Ύ New best model saved! Accuracy: {val_acc:.1f}%")
else:
patience_counter += 1
if patience_counter >= early_stopping_patience and epoch > 50:
print(f"⏹️ Early stopping triggered after {epoch} epochs")
break
print("=" * 80)
print("βœ… Training completed!")
# Load best model if saved
if save_best and os.path.exists('best_deep_model.pth'):
self.load_model('best_deep_model.pth')
print("πŸ“₯ Loaded best model weights.")
return self
def evaluate(self, threshold=0.5):
"""Evaluate the model on test set"""
print("\nπŸ“ˆ Evaluating model on test set...")
# Custom evaluation for DeepANN that returns sigmoid output
self.model.eval()
with torch.no_grad():
X_test_tensor = torch.FloatTensor(self.X_test_np)
y_pred_proba = self.model(X_test_tensor).numpy().flatten()
y_pred = (y_pred_proba >= threshold).astype(int)
# Calculate metrics
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
metrics = {
'accuracy': accuracy_score(self.y_test_np, y_pred),
'precision': precision_score(self.y_test_np, y_pred),
'recall': recall_score(self.y_test_np, y_pred),
'f1_score': f1_score(self.y_test_np, y_pred),
'auc_roc': roc_auc_score(self.y_test_np, y_pred_proba)
}
print("\nπŸ“Š Test Set Performance:")
print("-" * 30)
for metric, value in metrics.items():
print(f"{metric.capitalize()}: {value:.4f}")
# Plot confusion matrix
cm = plot_confusion_matrix(self.y_test_np, y_pred)
# Plot training history
plot_training_history(
self.train_losses, self.val_losses,
self.train_accuracies, self.val_accuracies
)
return metrics, y_pred, y_pred_proba
def save_model(self, filepath):
"""Save model and training state"""
torch.save({
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'train_losses': self.train_losses,
'val_losses': self.val_losses,
'train_accuracies': self.train_accuracies,
'val_accuracies': self.val_accuracies,
'feature_names': self.feature_names
}, filepath)
def load_model(self, filepath):
"""Load model and training state"""
checkpoint = torch.load(filepath, map_location=self.device, weights_only=False)
self.model.load_state_dict(checkpoint['model_state_dict'])
# Load training history if available
if 'train_losses' in checkpoint:
self.train_losses = checkpoint['train_losses']
self.val_losses = checkpoint['val_losses']
self.train_accuracies = checkpoint['train_accuracies']
self.val_accuracies = checkpoint['val_accuracies']
print(f"βœ… Model loaded from {filepath}")
def main():
"""Main training function"""
print("🎯 Deep Loan Prediction Neural Network Training")
print("=" * 60)
# Configuration
config = {
'learning_rate': 0.012, # Optimized learning rate
'batch_size': 1536, # Optimized batch size
'num_epochs': 200, # Sufficient epochs
'early_stopping_patience': 30, # Patience for early stopping
'weight_decay': 1e-4, # Regularization
'validation_split': 0.2 # 20% for validation
}
print("βš™οΈ Configuration:")
for key, value in config.items():
print(f" {key}: {value}")
# Initialize trainer
trainer = DeepLoanTrainer(
learning_rate=config['learning_rate'],
batch_size=config['batch_size']
)
# Show model architecture
print("\nπŸ—οΈ Model Architecture:")
model_summary(trainer.model)
# Prepare data and setup training
trainer.prepare_data(validation_split=config['validation_split'])
trainer.setup_training(weight_decay=config['weight_decay'])
# Train the model
trainer.train(
num_epochs=config['num_epochs'],
early_stopping_patience=config['early_stopping_patience']
)
# Evaluate the model
metrics, predictions, probabilities = trainer.evaluate()
# Save final model
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
model_filename = f"loan_prediction_deep_model_{timestamp}.pth"
trainer.save_model(model_filename)
print(f"\nπŸ’Ύ Final model saved as: {model_filename}")
# Save training results
results = {
'config': config,
'final_metrics': metrics,
'training_history': {
'train_losses': trainer.train_losses,
'val_losses': trainer.val_losses,
'train_accuracies': trainer.train_accuracies,
'val_accuracies': trainer.val_accuracies
}
}
results_filename = f"deep_training_results_{timestamp}.json"
with open(results_filename, 'w') as f:
json.dump(results, f, indent=2)
print(f"πŸ“„ Training results saved as: {results_filename}")
# Performance Analysis
print("\n" + "=" * 60)
print("🎯 PERFORMANCE ANALYSIS")
print("=" * 60)
final_accuracy = metrics['accuracy']
if final_accuracy > 0.80:
print(f"πŸ† EXCELLENT: Accuracy of {final_accuracy:.1%} achieved!")
print(" Outstanding performance for loan prediction!")
elif final_accuracy > 0.70:
print(f"βœ… VERY GOOD: Accuracy of {final_accuracy:.1%} achieved!")
print(" Great performance for this challenging problem!")
elif final_accuracy > 0.60:
print(f"πŸ‘ GOOD: Accuracy of {final_accuracy:.1%} achieved!")
print(" Solid improvement over baseline!")
else:
print(f"⚠️ NEEDS IMPROVEMENT: Accuracy of {final_accuracy:.1%}")
print(" Consider additional optimization or feature engineering")
print(f"\nπŸ“Š Key Metrics:")
print(f" β€’ Accuracy: {metrics['accuracy']:.1%}")
print(f" β€’ Precision: {metrics['precision']:.1%}")
print(f" β€’ Recall: {metrics['recall']:.1%}")
print(f" β€’ F1-Score: {metrics['f1_score']:.1%}")
print(f" β€’ AUC-ROC: {metrics['auc_roc']:.3f}")
# Business insights
print(f"\nπŸ’Ό Business Impact:")
precision = metrics['precision']
recall = metrics['recall']
if precision > 0.85:
print(f" βœ… High Precision ({precision:.1%}): Low false positive rate")
print(f" β†’ Minimizes bad loan approvals")
if recall > 0.70:
print(f" βœ… Good Recall ({recall:.1%}): Catches most good applications")
print(f" β†’ Maintains business volume")
elif recall < 0.60:
print(f" ⚠️ Low Recall ({recall:.1%}): May reject too many good loans")
print(f" β†’ Consider adjusting threshold")
return trainer, metrics
if __name__ == "__main__":
trainer, metrics = main()
print(f"\nπŸŽ‰ Training completed! Final accuracy: {metrics['accuracy']:.1%}")
print("πŸš€ Model is ready for production use!")