nullHawk commited on
Commit
eab81f9
·
1 Parent(s): a86561a

add: training script

Browse files
Files changed (1) hide show
  1. train.py +399 -0
train.py ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.optim as optim
4
+ from torch.utils.data import DataLoader, TensorDataset
5
+ from sklearn.model_selection import train_test_split
6
+ import numpy as np
7
+ import pandas as pd
8
+ import matplotlib.pyplot as plt
9
+ from datetime import datetime
10
+ import json
11
+ import os
12
+
13
+ from model import (
14
+ LoanPredictionANN,
15
+ LoanPredictionLightANN,
16
+ LoanPredictionDeepANN,
17
+ load_processed_data,
18
+ calculate_class_weights,
19
+ evaluate_model,
20
+ plot_training_history,
21
+ plot_confusion_matrix,
22
+ model_summary
23
+ )
24
+
25
+ class LoanPredictionTrainer:
26
+ """
27
+ Comprehensive trainer for Loan Prediction Neural Networks
28
+ """
29
+
30
+ def __init__(self, model_type='standard', learning_rate=0.001, batch_size=512,
31
+ device=None, use_class_weights=True):
32
+ """
33
+ Initialize the trainer
34
+
35
+ Args:
36
+ model_type: 'light', 'standard', or 'deep'
37
+ learning_rate: Learning rate for optimizer
38
+ batch_size: Batch size for training
39
+ device: Device to use ('cuda' or 'cpu')
40
+ use_class_weights: Whether to use class weights for imbalanced data
41
+ """
42
+ self.model_type = model_type
43
+ self.learning_rate = learning_rate
44
+ self.batch_size = batch_size
45
+ self.use_class_weights = use_class_weights
46
+
47
+ # Set device
48
+ if device is None:
49
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
50
+ else:
51
+ self.device = torch.device(device)
52
+
53
+ print(f"Using device: {self.device}")
54
+
55
+ # Initialize model
56
+ self.model = self._create_model()
57
+ self.model.to(self.device)
58
+
59
+ # Training history
60
+ self.train_losses = []
61
+ self.val_losses = []
62
+ self.train_accuracies = []
63
+ self.val_accuracies = []
64
+
65
+ def _create_model(self):
66
+ """Create model based on specified type"""
67
+ if self.model_type == 'light':
68
+ return LoanPredictionLightANN()
69
+ elif self.model_type == 'standard':
70
+ return LoanPredictionANN()
71
+ elif self.model_type == 'deep':
72
+ return LoanPredictionDeepANN()
73
+ else:
74
+ raise ValueError("model_type must be 'light', 'standard', or 'deep'")
75
+
76
+ def prepare_data(self, data_path='data/processed', validation_split=0.2):
77
+ """Load and prepare data for training"""
78
+ print("Loading processed data...")
79
+ X_train, y_train, X_test, y_test, feature_names = load_processed_data(data_path)
80
+
81
+ # Split training data into train/validation
82
+ X_train, X_val, y_train, y_val = train_test_split(
83
+ X_train, y_train, test_size=validation_split,
84
+ random_state=42, stratify=y_train
85
+ )
86
+
87
+ # Convert to PyTorch tensors
88
+ self.X_train = torch.FloatTensor(X_train).to(self.device)
89
+ self.y_train = torch.FloatTensor(y_train).unsqueeze(1).to(self.device)
90
+
91
+ self.X_val = torch.FloatTensor(X_val).to(self.device)
92
+ self.y_val = torch.FloatTensor(y_val).unsqueeze(1).to(self.device)
93
+
94
+ self.X_test = torch.FloatTensor(X_test).to(self.device)
95
+ self.y_test = torch.FloatTensor(y_test).unsqueeze(1).to(self.device)
96
+
97
+ # Store original numpy arrays for evaluation
98
+ self.X_test_np = X_test
99
+ self.y_test_np = y_test
100
+
101
+ self.feature_names = feature_names
102
+
103
+ # Create data loaders
104
+ train_dataset = TensorDataset(self.X_train, self.y_train)
105
+ val_dataset = TensorDataset(self.X_val, self.y_val)
106
+
107
+ self.train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True)
108
+ self.val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
109
+
110
+ # Calculate class weights if needed
111
+ if self.use_class_weights:
112
+ self.class_weights = calculate_class_weights(y_train)
113
+ print(f"Class weights: {self.class_weights}")
114
+ else:
115
+ self.class_weights = None
116
+
117
+ print(f"Data prepared:")
118
+ print(f" Training samples: {len(X_train):,}")
119
+ print(f" Validation samples: {len(X_val):,}")
120
+ print(f" Test samples: {len(X_test):,}")
121
+ print(f" Features: {len(feature_names)}")
122
+
123
+ return self
124
+
125
+ def setup_training(self, weight_decay=1e-5):
126
+ """Setup optimizer and loss function"""
127
+ # Optimizer
128
+ self.optimizer = optim.Adam(
129
+ self.model.parameters(),
130
+ lr=self.learning_rate,
131
+ weight_decay=weight_decay
132
+ )
133
+
134
+ # Learning rate scheduler
135
+ self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
136
+ self.optimizer, mode='min', factor=0.5, patience=10, verbose=True
137
+ )
138
+
139
+ # Loss function
140
+ if self.use_class_weights and self.class_weights is not None:
141
+ # Weighted BCE loss for imbalanced data
142
+ pos_weight = self.class_weights[1] / self.class_weights[0]
143
+ self.criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weight.to(self.device))
144
+ else:
145
+ self.criterion = nn.BCELoss()
146
+
147
+ print(f"Training setup complete:")
148
+ print(f" Optimizer: Adam (lr={self.learning_rate}, weight_decay={weight_decay})")
149
+ print(f" Scheduler: ReduceLROnPlateau")
150
+ print(f" Loss function: {'Weighted BCE' if self.use_class_weights else 'BCE'}")
151
+
152
+ return self
153
+
154
+ def train_epoch(self):
155
+ """Train for one epoch"""
156
+ self.model.train()
157
+ total_loss = 0.0
158
+ correct = 0
159
+ total = 0
160
+
161
+ for batch_idx, (data, target) in enumerate(self.train_loader):
162
+ self.optimizer.zero_grad()
163
+
164
+ output = self.model(data)
165
+
166
+ if isinstance(self.criterion, nn.BCEWithLogitsLoss):
167
+ # Remove sigmoid from model output for BCEWithLogitsLoss
168
+ output_logits = output # Assuming output is logits
169
+ loss = self.criterion(output_logits, target)
170
+ predicted = torch.sigmoid(output_logits) > 0.5
171
+ else:
172
+ loss = self.criterion(output, target)
173
+ predicted = output > 0.5
174
+
175
+ loss.backward()
176
+ self.optimizer.step()
177
+
178
+ total_loss += loss.item()
179
+ total += target.size(0)
180
+ correct += predicted.eq(target > 0.5).sum().item()
181
+
182
+ avg_loss = total_loss / len(self.train_loader)
183
+ accuracy = 100. * correct / total
184
+
185
+ return avg_loss, accuracy
186
+
187
+ def validate_epoch(self):
188
+ """Validate for one epoch"""
189
+ self.model.eval()
190
+ total_loss = 0.0
191
+ correct = 0
192
+ total = 0
193
+
194
+ with torch.no_grad():
195
+ for data, target in self.val_loader:
196
+ output = self.model(data)
197
+
198
+ if isinstance(self.criterion, nn.BCEWithLogitsLoss):
199
+ output_logits = output
200
+ loss = self.criterion(output_logits, target)
201
+ predicted = torch.sigmoid(output_logits) > 0.5
202
+ else:
203
+ loss = self.criterion(output, target)
204
+ predicted = output > 0.5
205
+
206
+ total_loss += loss.item()
207
+ total += target.size(0)
208
+ correct += predicted.eq(target > 0.5).sum().item()
209
+
210
+ avg_loss = total_loss / len(self.val_loader)
211
+ accuracy = 100. * correct / total
212
+
213
+ return avg_loss, accuracy
214
+
215
+ def train(self, num_epochs=100, early_stopping_patience=20, save_best=True):
216
+ """Train the model"""
217
+ print(f"\nStarting training for {num_epochs} epochs...")
218
+ print("=" * 60)
219
+
220
+ best_val_loss = float('inf')
221
+ patience_counter = 0
222
+
223
+ for epoch in range(1, num_epochs + 1):
224
+ # Train
225
+ train_loss, train_acc = self.train_epoch()
226
+
227
+ # Validate
228
+ val_loss, val_acc = self.validate_epoch()
229
+
230
+ # Update learning rate
231
+ self.scheduler.step(val_loss)
232
+
233
+ # Store history
234
+ self.train_losses.append(train_loss)
235
+ self.val_losses.append(val_loss)
236
+ self.train_accuracies.append(train_acc)
237
+ self.val_accuracies.append(val_acc)
238
+
239
+ # Print progress
240
+ if epoch % 10 == 0 or epoch == 1:
241
+ print(f'Epoch {epoch:3d}/{num_epochs}: '
242
+ f'Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.2f}% | '
243
+ f'Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.2f}%')
244
+
245
+ # Early stopping
246
+ if val_loss < best_val_loss:
247
+ best_val_loss = val_loss
248
+ patience_counter = 0
249
+ if save_best:
250
+ self.save_model('best_model.pth')
251
+ else:
252
+ patience_counter += 1
253
+
254
+ if patience_counter >= early_stopping_patience:
255
+ print(f"Early stopping triggered after {epoch} epochs")
256
+ break
257
+
258
+ print("=" * 60)
259
+ print("Training completed!")
260
+
261
+ # Load best model if saved
262
+ if save_best and os.path.exists('best_model.pth'):
263
+ self.load_model('best_model.pth')
264
+ print("Loaded best model weights.")
265
+
266
+ return self
267
+
268
+ def evaluate(self, threshold=0.5):
269
+ """Evaluate the model on test set"""
270
+ print("\nEvaluating model on test set...")
271
+
272
+ metrics, y_pred, y_pred_proba = evaluate_model(
273
+ self.model, self.X_test_np, self.y_test_np, threshold
274
+ )
275
+
276
+ print("\nTest Set Performance:")
277
+ print("-" * 30)
278
+ for metric, value in metrics.items():
279
+ print(f"{metric.capitalize()}: {value:.4f}")
280
+
281
+ # Plot confusion matrix
282
+ cm = plot_confusion_matrix(self.y_test_np, y_pred)
283
+
284
+ # Plot training history
285
+ plot_training_history(
286
+ self.train_losses, self.val_losses,
287
+ self.train_accuracies, self.val_accuracies
288
+ )
289
+
290
+ return metrics, y_pred, y_pred_proba
291
+
292
+ def save_model(self, filepath):
293
+ """Save model and training state"""
294
+ torch.save({
295
+ 'model_state_dict': self.model.state_dict(),
296
+ 'optimizer_state_dict': self.optimizer.state_dict(),
297
+ 'model_type': self.model_type,
298
+ 'learning_rate': self.learning_rate,
299
+ 'batch_size': self.batch_size,
300
+ 'train_losses': self.train_losses,
301
+ 'val_losses': self.val_losses,
302
+ 'train_accuracies': self.train_accuracies,
303
+ 'val_accuracies': self.val_accuracies,
304
+ 'feature_names': self.feature_names
305
+ }, filepath)
306
+
307
+ def load_model(self, filepath):
308
+ """Load model and training state"""
309
+ checkpoint = torch.load(filepath, map_location=self.device)
310
+ self.model.load_state_dict(checkpoint['model_state_dict'])
311
+ self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
312
+
313
+ # Load training history if available
314
+ if 'train_losses' in checkpoint:
315
+ self.train_losses = checkpoint['train_losses']
316
+ self.val_losses = checkpoint['val_losses']
317
+ self.train_accuracies = checkpoint['train_accuracies']
318
+ self.val_accuracies = checkpoint['val_accuracies']
319
+
320
+ print(f"Model loaded from {filepath}")
321
+
322
+ def get_model_summary(self):
323
+ """Print model summary"""
324
+ model_summary(self.model)
325
+
326
+
327
+ def main():
328
+ """Main training function"""
329
+ print("Loan Prediction Neural Network Training")
330
+ print("=" * 50)
331
+
332
+ # Configuration
333
+ config = {
334
+ 'model_type': 'standard', # 'light', 'standard', 'deep'
335
+ 'learning_rate': 0.001,
336
+ 'batch_size': 512,
337
+ 'num_epochs': 100,
338
+ 'weight_decay': 1e-5,
339
+ 'early_stopping_patience': 20,
340
+ 'use_class_weights': True,
341
+ 'validation_split': 0.2
342
+ }
343
+
344
+ print("Configuration:")
345
+ for key, value in config.items():
346
+ print(f" {key}: {value}")
347
+
348
+ # Initialize trainer
349
+ trainer = LoanPredictionTrainer(
350
+ model_type=config['model_type'],
351
+ learning_rate=config['learning_rate'],
352
+ batch_size=config['batch_size'],
353
+ use_class_weights=config['use_class_weights']
354
+ )
355
+
356
+ # Show model architecture
357
+ trainer.get_model_summary()
358
+
359
+ # Prepare data and setup training
360
+ trainer.prepare_data(validation_split=config['validation_split'])
361
+ trainer.setup_training(weight_decay=config['weight_decay'])
362
+
363
+ # Train the model
364
+ trainer.train(
365
+ num_epochs=config['num_epochs'],
366
+ early_stopping_patience=config['early_stopping_patience']
367
+ )
368
+
369
+ # Evaluate the model
370
+ metrics, predictions, probabilities = trainer.evaluate()
371
+
372
+ # Save final model
373
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
374
+ model_filename = f"loan_prediction_model_{config['model_type']}_{timestamp}.pth"
375
+ trainer.save_model(model_filename)
376
+ print(f"\nFinal model saved as: {model_filename}")
377
+
378
+ # Save training results
379
+ results = {
380
+ 'config': config,
381
+ 'final_metrics': metrics,
382
+ 'training_history': {
383
+ 'train_losses': trainer.train_losses,
384
+ 'val_losses': trainer.val_losses,
385
+ 'train_accuracies': trainer.train_accuracies,
386
+ 'val_accuracies': trainer.val_accuracies
387
+ }
388
+ }
389
+
390
+ results_filename = f"training_results_{timestamp}.json"
391
+ with open(results_filename, 'w') as f:
392
+ json.dump(results, f, indent=2)
393
+
394
+ print(f"Training results saved as: {results_filename}")
395
+ print("\nTraining complete!")
396
+
397
+
398
+ if __name__ == "__main__":
399
+ main()