Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from transformers import pipeline | |
analyzer = pipeline("text-classification",model="distilbert/distilbert-base-uncased-finetuned-sst-2-english") | |
# model_path = ("../.venv/Models/models--distilbert--distilbert-base-uncased-finetuned-sst-2-english/snapshots/714eb0fa89d2f80546fda750413ed43d93601a13") | |
# analyzer = pipeline("text-classification",model=model_path) | |
# print(analyzer(["This production is good", "This product was quite expensive"])) | |
def sentiment_analyzer(review): | |
sentiment = analyzer(review) | |
return sentiment[0]['label'] | |
def sentiment_bar_chart(df): | |
sentiment_counts = df['Sentiment'].value_counts() | |
# Create a bar chart | |
fig, ax = plt.subplots() | |
sentiment_counts.plot(kind='pie', ax=ax, autopct='%1.1f%%') | |
ax.set_title('Review Sentiment Counts') | |
ax.set_xlabel('Sentiment') | |
ax.set_ylabel('Count') | |
# ax.set_xticklabels(['Positive', 'Negative'], rotation=0) | |
# Return the figure object | |
return fig | |
def read_reviews_and_analyze_sentiment(file_object): | |
df = pd.read_excel(file_object) | |
if 'Review' not in df.columns: | |
raise ValueError("Excel file must contain a 'Review' column.") | |
df['Sentiment'] = df['Review'].apply(sentiment_analyzer) | |
chart_object = sentiment_bar_chart(df) | |
return df, chart_object | |
# result = read_reviews_and_analyze_sentiment("../Files/Sentiment_Analysis_Reviews.xlsx") | |
# print(result) | |
# df = read_reviews_and_analyze_sentiment('path_to_your_excel_file.xlsx') | |
# print(df) | |
demo = gr.Interface(fn=read_reviews_and_analyze_sentiment, | |
# inputs=[gr.Textbox(label="Input you text/review comment for analysis", lines =4)], | |
# outputs=[gr.Textbox(label="Sentiment", lines=1)], | |
inputs=[gr.File(file_types=[".xlsx"], label="Upload your review comment file")], | |
outputs=[gr.Dataframe(label="Sentiments"), gr.Plot(label="Sentiment Analysis")], | |
title="Sentiment Analyzer", | |
description="THIS APPLICATION CAN BE USED TO ANALYZE THE SENTIMENT BASED ON FILE UPLAODED.") | |
demo.launch() | |
# Assuming you have a dataframe `df` with appropriate data | |
# fig = sentiment_bar_chart(df) | |
# fig.show() # This line is just to visualize the plot in a local environment |