Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 8,792 Bytes
cde9023 eb502db cde9023 eb502db cde9023 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import streamlit as st
from typing import Union, Optional
import pandas as pd
import plotly.express as px
import faiss
import numpy as np
from transformers import AutoModel, AutoProcessor
import torch
from datetime import datetime
class SelectedIndex:
def __init__(self, idx) -> None:
self.idx = int(idx)
self.timestamp = datetime.now()
def __eq__(self, value: Union["SelectedIndex", int]) -> bool:
if isinstance(value, SelectedIndex):
return self.idx == value.idx
return self.idx == int(value)
def __ne__(self, value: Union["SelectedIndex", int]) -> bool:
return not self.__eq__(value)
def is_valid(self) -> bool:
return self.idx >= 0
@st.cache_data
def load_data(path: str):
df = pd.read_parquet(path)
embs = np.stack(df["embedding"].tolist()).astype("float32")
faiss.normalize_L2(embs)
D = embs.shape[1]
index = faiss.IndexFlatIP(D)
index.add(embs)
return df, index, embs
def load_model() -> tuple[AutoModel, AutoProcessor]:
if "preprocessor" not in st.session_state:
st.session_state.preprocessor = AutoProcessor.from_pretrained(
"nvidia/Cosmos-Embed1-224p", trust_remote_code=True, token=True,
)
if "model" not in st.session_state:
model = AutoModel.from_pretrained(
"nvidia/Cosmos-Embed1-224p", trust_remote_code=True, token=True,
)
model.eval()
st.session_state.model = model
return st.session_state.model, st.session_state.preprocessor
def preview_video(df, idx, slot, height=420, margin_top=30, autoplay=True, title=None) -> None:
if title:
slot.markdown(f"### {title}")
start = int(df.loc[idx, "span_start"])
end = int(df.loc[idx, "span_end"])
youtube_id = df.loc[idx, "youtube_id"]
url = f"https://www.youtube.com/embed/{youtube_id}?start={start}&end={end}"
sep = "?" if "?" not in url else "&"
params = f"{sep}mute=1&rel=0"
if autoplay:
params += "&autoplay=1"
slot.markdown(
f'''
<div style="margin-top:{margin_top}px">
<iframe width="100%" height="{height}"
src="{url}{params}"
frameborder="0"
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
allow="autoplay; fullscreen" allowfullscreen>
</iframe>
</div>
''',
unsafe_allow_html=True
)
def get_nearest_ids(vec, k=5, ignore_self=True) -> list:
q = vec.reshape(1, -1).astype("float32")
faiss.normalize_L2(q)
topk = k + 1 if ignore_self else k
_, I = index.search(q, topk)
ids = I[0]
return ids[1:].tolist() if ignore_self else ids.tolist()
def get_most_recent_selection() -> tuple[Optional[int], str]:
if st.session_state.text_selection.is_valid() and st.session_state.click_selection.is_valid():
if st.session_state.text_selection.timestamp > st.session_state.click_selection.timestamp:
return st.session_state.text_selection.idx, "text"
return st.session_state.click_selection.idx, "click"
if st.session_state.text_selection.is_valid():
return st.session_state.text_selection.idx, "text"
if st.session_state.click_selection.is_valid():
return st.session_state.click_selection.idx, "click"
return None, ""
def reset_state() -> None:
if "text_selection" not in st.session_state:
st.session_state.text_selection = SelectedIndex(-1)
if "click_selection" not in st.session_state:
st.session_state.click_selection = SelectedIndex(-1)
if "text_query" not in st.session_state:
st.session_state.text_query = ""
# βββ App setup ββββββββββββββββββββββββββββββββββββββββββββββββββββ
st.set_page_config(layout="wide")
reset_state()
model, preprocessor = load_model()
file_map = {"kinetics700 (val)": "src/kinetics700_val.parquet", "opendv (val)": "src/opendrive_val.parquet"}
st.title("π Search with Cosmos-Embed1")
col1, col2 = st.columns([2,2])
with col1:
dataset = st.selectbox("Select dataset", list(file_map.keys()), on_change=reset_state)
df, index, embs = load_data(file_map[dataset])
# initialize session state
if "text_selection" not in st.session_state:
st.session_state.text_selection = SelectedIndex(-1)
if "click_selection" not in st.session_state:
st.session_state.click_selection = SelectedIndex(-1)
if "text_query" not in st.session_state:
st.session_state.text_query = ""
# βββ Layout ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# LEFT: scatter
with col1:
fig = px.scatter(
df, x="x", y="y",
hover_name="tar_key", hover_data=["cluster_id"],
color="cluster_id", color_continuous_scale="Turbo",
title="t-SNE projection (click to select)"
)
fig.update_layout(
dragmode="zoom",
margin=dict(l=5, r=5, t=40, b=5),
xaxis_title=None, yaxis_title=None,
coloraxis_colorbar=dict(title="")
)
fig.update_xaxes(showticklabels=False, showgrid=False, zeroline=False,
showline=True, linecolor="black", mirror=True)
fig.update_yaxes(showticklabels=False, showgrid=False, zeroline=False,
showline=True, linecolor="black", mirror=True)
fig.update_layout(annotations=[dict(
text="k-means cluster", xref="paper", yref="paper",
x=1.02, y=0.5, textangle=90, showarrow=False
)])
most_recent_idx, most_recent_method = get_most_recent_selection()
if most_recent_idx is not None and most_recent_method == "text":
x0, y0 = df.iloc[most_recent_idx][["x", "y"]]
span = 6.0
fig.update_layout(
xaxis_range=[x0 - span, x0 + span],
yaxis_range=[y0 - span, y0 + span],
transition={"duration": 1},
)
click_event = st.plotly_chart(
fig, use_container_width=True,
on_select="rerun", selection_mode="points"
)
# RIGHT: text input & preview
with col2:
if click_event and click_event.get("selection", {}).get("point_indices"):
curr_click = click_event["selection"]["point_indices"][0]
if curr_click != st.session_state.click_selection:
# new click so update the previous selection and wipe any text query
st.session_state.click_selection = SelectedIndex(curr_click)
st.session_state.text_query = ""
# text input (will pick up cleared or existing text)
text_query = st.text_input(
"Search via text",
key="text_query",
help="Type a query and press Enter"
)
# if user typed text (and pressed Enter), override selection
if text_query:
with torch.no_grad():
model_input = preprocessor(text=[text_query])
emb_out = model.get_text_embeddings(**model_input).text_proj.cpu().numpy()
idx_text, = get_nearest_ids(emb_out, k=1, ignore_self=False)
if st.session_state.text_selection != idx_text:
# new text so update the previous selection and wipe any text query
st.session_state.text_selection = SelectedIndex(idx_text)
st.rerun()
# main preview
preview_slot = st.empty()
most_recent, most_recent_modality = get_most_recent_selection()
if most_recent is not None:
preview_video(df, most_recent, preview_slot)
else:
preview_slot.write("β³ Waiting for selectionβ¦")
# BOTTOM: 5 nearest neighbors
st.markdown("### π¬ 5 Closest Videos")
if most_recent is not None:
ignore_self = most_recent_modality == "click"
nn_ids = get_nearest_ids(embs[most_recent], k=5, ignore_self=ignore_self)
cols = st.columns(5)
for c, nid in zip(cols, nn_ids):
preview_video(df, nid, c, height=180, margin_top=5, autoplay=False)
else:
st.write("Use a click or a text query above to list neighbors.")
|