multimodalart's picture
Upload 2025 files
22a452a verified
raw
history blame
41.4 kB
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin
from ...utils import logging
from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from .vae import DecoderOutput, DiagonalGaussianDistribution
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
CACHE_T = 2
class WanCausalConv3d(nn.Conv3d):
r"""
A custom 3D causal convolution layer with feature caching support.
This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature
caching for efficient inference.
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Union[int, Tuple[int, int, int]] = 1,
padding: Union[int, Tuple[int, int, int]] = 0,
) -> None:
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
)
# Set up causal padding
self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0)
self.padding = (0, 0, 0)
def forward(self, x, cache_x=None):
padding = list(self._padding)
if cache_x is not None and self._padding[4] > 0:
cache_x = cache_x.to(x.device)
x = torch.cat([cache_x, x], dim=2)
padding[4] -= cache_x.shape[2]
x = F.pad(x, padding)
return super().forward(x)
class WanRMS_norm(nn.Module):
r"""
A custom RMS normalization layer.
Args:
dim (int): The number of dimensions to normalize over.
channel_first (bool, optional): Whether the input tensor has channels as the first dimension.
Default is True.
images (bool, optional): Whether the input represents image data. Default is True.
bias (bool, optional): Whether to include a learnable bias term. Default is False.
"""
def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None:
super().__init__()
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
self.channel_first = channel_first
self.scale = dim**0.5
self.gamma = nn.Parameter(torch.ones(shape))
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
def forward(self, x):
return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
class WanUpsample(nn.Upsample):
r"""
Perform upsampling while ensuring the output tensor has the same data type as the input.
Args:
x (torch.Tensor): Input tensor to be upsampled.
Returns:
torch.Tensor: Upsampled tensor with the same data type as the input.
"""
def forward(self, x):
return super().forward(x.float()).type_as(x)
class WanResample(nn.Module):
r"""
A custom resampling module for 2D and 3D data.
Args:
dim (int): The number of input/output channels.
mode (str): The resampling mode. Must be one of:
- 'none': No resampling (identity operation).
- 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution.
- 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution.
- 'downsample2d': 2D downsampling with zero-padding and convolution.
- 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution.
"""
def __init__(self, dim: int, mode: str) -> None:
super().__init__()
self.dim = dim
self.mode = mode
# layers
if mode == "upsample2d":
self.resample = nn.Sequential(
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
)
elif mode == "upsample3d":
self.resample = nn.Sequential(
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
)
self.time_conv = WanCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
elif mode == "downsample2d":
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
elif mode == "downsample3d":
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
self.time_conv = WanCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
else:
self.resample = nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
b, c, t, h, w = x.size()
if self.mode == "upsample3d":
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = "Rep"
feat_idx[0] += 1
else:
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
# cache last frame of last two chunk
cache_x = torch.cat(
[feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2
)
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
if feat_cache[idx] == "Rep":
x = self.time_conv(x)
else:
x = self.time_conv(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
x = x.reshape(b, 2, c, t, h, w)
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
x = x.reshape(b, c, t * 2, h, w)
t = x.shape[2]
x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
x = self.resample(x)
x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4)
if self.mode == "downsample3d":
if feat_cache is not None:
idx = feat_idx[0]
if feat_cache[idx] is None:
feat_cache[idx] = x.clone()
feat_idx[0] += 1
else:
cache_x = x[:, :, -1:, :, :].clone()
x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
feat_cache[idx] = cache_x
feat_idx[0] += 1
return x
class WanResidualBlock(nn.Module):
r"""
A custom residual block module.
Args:
in_dim (int): Number of input channels.
out_dim (int): Number of output channels.
dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0.
non_linearity (str, optional): Type of non-linearity to use. Default is "silu".
"""
def __init__(
self,
in_dim: int,
out_dim: int,
dropout: float = 0.0,
non_linearity: str = "silu",
) -> None:
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.nonlinearity = get_activation(non_linearity)
# layers
self.norm1 = WanRMS_norm(in_dim, images=False)
self.conv1 = WanCausalConv3d(in_dim, out_dim, 3, padding=1)
self.norm2 = WanRMS_norm(out_dim, images=False)
self.dropout = nn.Dropout(dropout)
self.conv2 = WanCausalConv3d(out_dim, out_dim, 3, padding=1)
self.conv_shortcut = WanCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
def forward(self, x, feat_cache=None, feat_idx=[0]):
# Apply shortcut connection
h = self.conv_shortcut(x)
# First normalization and activation
x = self.norm1(x)
x = self.nonlinearity(x)
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv1(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv1(x)
# Second normalization and activation
x = self.norm2(x)
x = self.nonlinearity(x)
# Dropout
x = self.dropout(x)
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv2(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv2(x)
# Add residual connection
return x + h
class WanAttentionBlock(nn.Module):
r"""
Causal self-attention with a single head.
Args:
dim (int): The number of channels in the input tensor.
"""
def __init__(self, dim):
super().__init__()
self.dim = dim
# layers
self.norm = WanRMS_norm(dim)
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
self.proj = nn.Conv2d(dim, dim, 1)
def forward(self, x):
identity = x
batch_size, channels, time, height, width = x.size()
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width)
x = self.norm(x)
# compute query, key, value
qkv = self.to_qkv(x)
qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1)
qkv = qkv.permute(0, 1, 3, 2).contiguous()
q, k, v = qkv.chunk(3, dim=-1)
# apply attention
x = F.scaled_dot_product_attention(q, k, v)
x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width)
# output projection
x = self.proj(x)
# Reshape back: [(b*t), c, h, w] -> [b, c, t, h, w]
x = x.view(batch_size, time, channels, height, width)
x = x.permute(0, 2, 1, 3, 4)
return x + identity
class WanMidBlock(nn.Module):
"""
Middle block for WanVAE encoder and decoder.
Args:
dim (int): Number of input/output channels.
dropout (float): Dropout rate.
non_linearity (str): Type of non-linearity to use.
"""
def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1):
super().__init__()
self.dim = dim
# Create the components
resnets = [WanResidualBlock(dim, dim, dropout, non_linearity)]
attentions = []
for _ in range(num_layers):
attentions.append(WanAttentionBlock(dim))
resnets.append(WanResidualBlock(dim, dim, dropout, non_linearity))
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(self, x, feat_cache=None, feat_idx=[0]):
# First residual block
x = self.resnets[0](x, feat_cache, feat_idx)
# Process through attention and residual blocks
for attn, resnet in zip(self.attentions, self.resnets[1:]):
if attn is not None:
x = attn(x)
x = resnet(x, feat_cache, feat_idx)
return x
class WanEncoder3d(nn.Module):
r"""
A 3D encoder module.
Args:
dim (int): The base number of channels in the first layer.
z_dim (int): The dimensionality of the latent space.
dim_mult (list of int): Multipliers for the number of channels in each block.
num_res_blocks (int): Number of residual blocks in each block.
attn_scales (list of float): Scales at which to apply attention mechanisms.
temperal_downsample (list of bool): Whether to downsample temporally in each block.
dropout (float): Dropout rate for the dropout layers.
non_linearity (str): Type of non-linearity to use.
"""
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
dropout=0.0,
non_linearity: str = "silu",
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_downsample = temperal_downsample
self.nonlinearity = get_activation(non_linearity)
# dimensions
dims = [dim * u for u in [1] + dim_mult]
scale = 1.0
# init block
self.conv_in = WanCausalConv3d(3, dims[0], 3, padding=1)
# downsample blocks
self.down_blocks = nn.ModuleList([])
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
for _ in range(num_res_blocks):
self.down_blocks.append(WanResidualBlock(in_dim, out_dim, dropout))
if scale in attn_scales:
self.down_blocks.append(WanAttentionBlock(out_dim))
in_dim = out_dim
# downsample block
if i != len(dim_mult) - 1:
mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
self.down_blocks.append(WanResample(out_dim, mode=mode))
scale /= 2.0
# middle blocks
self.mid_block = WanMidBlock(out_dim, dropout, non_linearity, num_layers=1)
# output blocks
self.norm_out = WanRMS_norm(out_dim, images=False)
self.conv_out = WanCausalConv3d(out_dim, z_dim, 3, padding=1)
self.gradient_checkpointing = False
def forward(self, x, feat_cache=None, feat_idx=[0]):
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv_in(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv_in(x)
## downsamples
for layer in self.down_blocks:
if feat_cache is not None:
x = layer(x, feat_cache, feat_idx)
else:
x = layer(x)
## middle
x = self.mid_block(x, feat_cache, feat_idx)
## head
x = self.norm_out(x)
x = self.nonlinearity(x)
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv_out(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv_out(x)
return x
class WanUpBlock(nn.Module):
"""
A block that handles upsampling for the WanVAE decoder.
Args:
in_dim (int): Input dimension
out_dim (int): Output dimension
num_res_blocks (int): Number of residual blocks
dropout (float): Dropout rate
upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d')
non_linearity (str): Type of non-linearity to use
"""
def __init__(
self,
in_dim: int,
out_dim: int,
num_res_blocks: int,
dropout: float = 0.0,
upsample_mode: Optional[str] = None,
non_linearity: str = "silu",
):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
# Create layers list
resnets = []
# Add residual blocks and attention if needed
current_dim = in_dim
for _ in range(num_res_blocks + 1):
resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity))
current_dim = out_dim
self.resnets = nn.ModuleList(resnets)
# Add upsampling layer if needed
self.upsamplers = None
if upsample_mode is not None:
self.upsamplers = nn.ModuleList([WanResample(out_dim, mode=upsample_mode)])
self.gradient_checkpointing = False
def forward(self, x, feat_cache=None, feat_idx=[0]):
"""
Forward pass through the upsampling block.
Args:
x (torch.Tensor): Input tensor
feat_cache (list, optional): Feature cache for causal convolutions
feat_idx (list, optional): Feature index for cache management
Returns:
torch.Tensor: Output tensor
"""
for resnet in self.resnets:
if feat_cache is not None:
x = resnet(x, feat_cache, feat_idx)
else:
x = resnet(x)
if self.upsamplers is not None:
if feat_cache is not None:
x = self.upsamplers[0](x, feat_cache, feat_idx)
else:
x = self.upsamplers[0](x)
return x
class WanDecoder3d(nn.Module):
r"""
A 3D decoder module.
Args:
dim (int): The base number of channels in the first layer.
z_dim (int): The dimensionality of the latent space.
dim_mult (list of int): Multipliers for the number of channels in each block.
num_res_blocks (int): Number of residual blocks in each block.
attn_scales (list of float): Scales at which to apply attention mechanisms.
temperal_upsample (list of bool): Whether to upsample temporally in each block.
dropout (float): Dropout rate for the dropout layers.
non_linearity (str): Type of non-linearity to use.
"""
def __init__(
self,
dim=128,
z_dim=4,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
temperal_upsample=[False, True, True],
dropout=0.0,
non_linearity: str = "silu",
):
super().__init__()
self.dim = dim
self.z_dim = z_dim
self.dim_mult = dim_mult
self.num_res_blocks = num_res_blocks
self.attn_scales = attn_scales
self.temperal_upsample = temperal_upsample
self.nonlinearity = get_activation(non_linearity)
# dimensions
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
scale = 1.0 / 2 ** (len(dim_mult) - 2)
# init block
self.conv_in = WanCausalConv3d(z_dim, dims[0], 3, padding=1)
# middle blocks
self.mid_block = WanMidBlock(dims[0], dropout, non_linearity, num_layers=1)
# upsample blocks
self.up_blocks = nn.ModuleList([])
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
# residual (+attention) blocks
if i > 0:
in_dim = in_dim // 2
# Determine if we need upsampling
upsample_mode = None
if i != len(dim_mult) - 1:
upsample_mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
# Create and add the upsampling block
up_block = WanUpBlock(
in_dim=in_dim,
out_dim=out_dim,
num_res_blocks=num_res_blocks,
dropout=dropout,
upsample_mode=upsample_mode,
non_linearity=non_linearity,
)
self.up_blocks.append(up_block)
# Update scale for next iteration
if upsample_mode is not None:
scale *= 2.0
# output blocks
self.norm_out = WanRMS_norm(out_dim, images=False)
self.conv_out = WanCausalConv3d(out_dim, 3, 3, padding=1)
self.gradient_checkpointing = False
def forward(self, x, feat_cache=None, feat_idx=[0]):
## conv1
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv_in(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv_in(x)
## middle
x = self.mid_block(x, feat_cache, feat_idx)
## upsamples
for up_block in self.up_blocks:
x = up_block(x, feat_cache, feat_idx)
## head
x = self.norm_out(x)
x = self.nonlinearity(x)
if feat_cache is not None:
idx = feat_idx[0]
cache_x = x[:, :, -CACHE_T:, :, :].clone()
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
# cache last frame of last two chunk
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
x = self.conv_out(x, feat_cache[idx])
feat_cache[idx] = cache_x
feat_idx[0] += 1
else:
x = self.conv_out(x)
return x
class AutoencoderKLWan(ModelMixin, ConfigMixin, FromOriginalModelMixin):
r"""
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
Introduced in [Wan 2.1].
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
"""
_supports_gradient_checkpointing = False
@register_to_config
def __init__(
self,
base_dim: int = 96,
z_dim: int = 16,
dim_mult: Tuple[int] = [1, 2, 4, 4],
num_res_blocks: int = 2,
attn_scales: List[float] = [],
temperal_downsample: List[bool] = [False, True, True],
dropout: float = 0.0,
latents_mean: List[float] = [
-0.7571,
-0.7089,
-0.9113,
0.1075,
-0.1745,
0.9653,
-0.1517,
1.5508,
0.4134,
-0.0715,
0.5517,
-0.3632,
-0.1922,
-0.9497,
0.2503,
-0.2921,
],
latents_std: List[float] = [
2.8184,
1.4541,
2.3275,
2.6558,
1.2196,
1.7708,
2.6052,
2.0743,
3.2687,
2.1526,
2.8652,
1.5579,
1.6382,
1.1253,
2.8251,
1.9160,
],
) -> None:
super().__init__()
self.z_dim = z_dim
self.temperal_downsample = temperal_downsample
self.temperal_upsample = temperal_downsample[::-1]
self.encoder = WanEncoder3d(
base_dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout
)
self.quant_conv = WanCausalConv3d(z_dim * 2, z_dim * 2, 1)
self.post_quant_conv = WanCausalConv3d(z_dim, z_dim, 1)
self.decoder = WanDecoder3d(
base_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout
)
self.spatial_compression_ratio = 2 ** len(self.temperal_downsample)
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
# to perform decoding of a single video latent at a time.
self.use_slicing = False
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
# intermediate tiles together, the memory requirement can be lowered.
self.use_tiling = False
# The minimal tile height and width for spatial tiling to be used
self.tile_sample_min_height = 256
self.tile_sample_min_width = 256
# The minimal distance between two spatial tiles
self.tile_sample_stride_height = 192
self.tile_sample_stride_width = 192
def enable_tiling(
self,
tile_sample_min_height: Optional[int] = None,
tile_sample_min_width: Optional[int] = None,
tile_sample_stride_height: Optional[float] = None,
tile_sample_stride_width: Optional[float] = None,
) -> None:
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
Args:
tile_sample_min_height (`int`, *optional*):
The minimum height required for a sample to be separated into tiles across the height dimension.
tile_sample_min_width (`int`, *optional*):
The minimum width required for a sample to be separated into tiles across the width dimension.
tile_sample_stride_height (`int`, *optional*):
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
no tiling artifacts produced across the height dimension.
tile_sample_stride_width (`int`, *optional*):
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
artifacts produced across the width dimension.
"""
self.use_tiling = True
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def clear_cache(self):
def _count_conv3d(model):
count = 0
for m in model.modules():
if isinstance(m, WanCausalConv3d):
count += 1
return count
self._conv_num = _count_conv3d(self.decoder)
self._conv_idx = [0]
self._feat_map = [None] * self._conv_num
# cache encode
self._enc_conv_num = _count_conv3d(self.encoder)
self._enc_conv_idx = [0]
self._enc_feat_map = [None] * self._enc_conv_num
def _encode(self, x: torch.Tensor):
_, _, num_frame, height, width = x.shape
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
return self.tiled_encode(x)
self.clear_cache()
iter_ = 1 + (num_frame - 1) // 4
for i in range(iter_):
self._enc_conv_idx = [0]
if i == 0:
out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
else:
out_ = self.encoder(
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
feat_cache=self._enc_feat_map,
feat_idx=self._enc_conv_idx,
)
out = torch.cat([out, out_], 2)
enc = self.quant_conv(out)
self.clear_cache()
return enc
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
r"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded videos. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self._encode(x)
posterior = DiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(self, z: torch.Tensor, return_dict: bool = True):
_, _, num_frame, height, width = z.shape
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
return self.tiled_decode(z, return_dict=return_dict)
self.clear_cache()
x = self.post_quant_conv(z)
for i in range(num_frame):
self._conv_idx = [0]
if i == 0:
out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
else:
out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
out = torch.cat([out, out_], 2)
out = torch.clamp(out, min=-1.0, max=1.0)
self.clear_cache()
if not return_dict:
return (out,)
return DecoderOutput(sample=out)
@apply_forward_hook
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
r"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
r"""Encode a batch of images using a tiled encoder.
Args:
x (`torch.Tensor`): Input batch of videos.
Returns:
`torch.Tensor`:
The latent representation of the encoded videos.
"""
_, _, num_frames, height, width = x.shape
latent_height = height // self.spatial_compression_ratio
latent_width = width // self.spatial_compression_ratio
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = tile_latent_min_height - tile_latent_stride_height
blend_width = tile_latent_min_width - tile_latent_stride_width
# Split x into overlapping tiles and encode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, self.tile_sample_stride_height):
row = []
for j in range(0, width, self.tile_sample_stride_width):
self.clear_cache()
time = []
frame_range = 1 + (num_frames - 1) // 4
for k in range(frame_range):
self._enc_conv_idx = [0]
if k == 0:
tile = x[:, :, :1, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
else:
tile = x[
:,
:,
1 + 4 * (k - 1) : 1 + 4 * k,
i : i + self.tile_sample_min_height,
j : j + self.tile_sample_min_width,
]
tile = self.encoder(tile, feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
tile = self.quant_conv(tile)
time.append(tile)
row.append(torch.cat(time, dim=2))
rows.append(row)
self.clear_cache()
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
result_rows.append(torch.cat(result_row, dim=-1))
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
return enc
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
r"""
Decode a batch of images using a tiled decoder.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
_, _, num_frames, height, width = z.shape
sample_height = height * self.spatial_compression_ratio
sample_width = width * self.spatial_compression_ratio
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, tile_latent_stride_height):
row = []
for j in range(0, width, tile_latent_stride_width):
self.clear_cache()
time = []
for k in range(num_frames):
self._conv_idx = [0]
tile = z[:, :, k : k + 1, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
tile = self.post_quant_conv(tile)
decoded = self.decoder(tile, feat_cache=self._feat_map, feat_idx=self._conv_idx)
time.append(decoded)
row.append(torch.cat(time, dim=2))
rows.append(row)
self.clear_cache()
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
result_rows.append(torch.cat(result_row, dim=-1))
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[DecoderOutput, torch.Tensor]:
"""
Args:
sample (`torch.Tensor`): Input sample.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z, return_dict=return_dict)
return dec