Spaces:
Running
on
Zero
LTX-Video
LTX-Video is a diffusion transformer designed for fast and real-time generation of high-resolution videos from text and images. The main feature of LTX-Video is the Video-VAE. The Video-VAE has a higher pixel to latent compression ratio (1:192) which enables more efficient video data processing and faster generation speed. To support and prevent finer details from being lost during generation, the Video-VAE decoder performs the latent to pixel conversion and the last denoising step.
You can find all the original LTX-Video checkpoints under the Lightricks organization.
Click on the LTX-Video models in the right sidebar for more examples of other video generation tasks.
The example below demonstrates how to generate a video optimized for memory or inference speed.
Refer to the Reduce memory usage guide for more details about the various memory saving techniques.
The LTX-Video model below requires ~10GB of VRAM.
import torch
from diffusers import LTXPipeline, AutoModel
from diffusers.hooks import apply_group_offloading
from diffusers.utils import export_to_video
# fp8 layerwise weight-casting
transformer = AutoModel.from_pretrained(
"Lightricks/LTX-Video",
subfolder="transformer",
torch_dtype=torch.bfloat16
)
transformer.enable_layerwise_casting(
storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16
)
pipeline = LTXPipeline.from_pretrained("Lightricks/LTX-Video", transformer=transformer, torch_dtype=torch.bfloat16)
# group-offloading
onload_device = torch.device("cuda")
offload_device = torch.device("cpu")
pipeline.transformer.enable_group_offload(onload_device=onload_device, offload_device=offload_device, offload_type="leaf_level", use_stream=True)
apply_group_offloading(pipeline.text_encoder, onload_device=onload_device, offload_type="block_level", num_blocks_per_group=2)
apply_group_offloading(pipeline.vae, onload_device=onload_device, offload_type="leaf_level")
prompt = """
A woman with long brown hair and light skin smiles at another woman with long blonde hair.
The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek.
The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and
natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage
"""
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=768,
height=512,
num_frames=161,
decode_timestep=0.03,
decode_noise_scale=0.025,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=24)
Compilation is slow the first time but subsequent calls to the pipeline are faster.
import torch
from diffusers import LTXPipeline
from diffusers.utils import export_to_video
pipeline = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video", torch_dtype=torch.bfloat16
)
# torch.compile
pipeline.transformer.to(memory_format=torch.channels_last)
pipeline.transformer = torch.compile(
pipeline.transformer, mode="max-autotune", fullgraph=True
)
prompt = """
A woman with long brown hair and light skin smiles at another woman with long blonde hair.
The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek.
The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and
natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage
"""
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
video = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=768,
height=512,
num_frames=161,
decode_timestep=0.03,
decode_noise_scale=0.025,
num_inference_steps=50,
).frames[0]
export_to_video(video, "output.mp4", fps=24)
Notes
Refer to the following recommended settings for generation from the LTX-Video repository.
- The recommended dtype for the transformer, VAE, and text encoder is
torch.bfloat16
. The VAE and text encoder can also betorch.float32
ortorch.float16
. - For guidance-distilled variants of LTX-Video, set
guidance_scale
to1.0
. Theguidance_scale
for any other model should be set higher, like5.0
, for good generation quality. - For timestep-aware VAE variants (LTX-Video 0.9.1 and above), set
decode_timestep
to0.05
andimage_cond_noise_scale
to0.025
. - For variants that support interpolation between multiple conditioning images and videos (LTX-Video 0.9.5 and above), use similar images and videos for the best results. Divergence from the conditioning inputs may lead to abrupt transitionts in the generated video.
- The recommended dtype for the transformer, VAE, and text encoder is
LTX-Video 0.9.7 includes a spatial latent upscaler and a 13B parameter transformer. During inference, a low resolution video is quickly generated first and then upscaled and refined.
Show example code
import torch from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition from diffusers.utils import export_to_video, load_video pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-dev", torch_dtype=torch.bfloat16) pipeline_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=torch.bfloat16) pipeline.to("cuda") pipe_upsample.to("cuda") pipeline.vae.enable_tiling() def round_to_nearest_resolution_acceptable_by_vae(height, width): height = height - (height % pipeline.vae_temporal_compression_ratio) width = width - (width % pipeline.vae_temporal_compression_ratio) return height, width video = load_video( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cosmos/cosmos-video2world-input-vid.mp4" )[:21] # only use the first 21 frames as conditioning condition1 = LTXVideoCondition(video=video, frame_index=0) prompt = """ The video depicts a winding mountain road covered in snow, with a single vehicle traveling along it. The road is flanked by steep, rocky cliffs and sparse vegetation. The landscape is characterized by rugged terrain and a river visible in the distance. The scene captures the solitude and beauty of a winter drive through a mountainous region. """ negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted" expected_height, expected_width = 768, 1152 downscale_factor = 2 / 3 num_frames = 161 # 1. Generate video at smaller resolution # Text-only conditioning is also supported without the need to pass `conditions` downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor) downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width) latents = pipeline( conditions=[condition1], prompt=prompt, negative_prompt=negative_prompt, width=downscaled_width, height=downscaled_height, num_frames=num_frames, num_inference_steps=30, decode_timestep=0.05, decode_noise_scale=0.025, image_cond_noise_scale=0.0, guidance_scale=5.0, guidance_rescale=0.7, generator=torch.Generator().manual_seed(0), output_type="latent", ).frames # 2. Upscale generated video using latent upsampler with fewer inference steps # The available latent upsampler upscales the height/width by 2x upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2 upscaled_latents = pipe_upsample( latents=latents, output_type="latent" ).frames # 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended) video = pipeline( conditions=[condition1], prompt=prompt, negative_prompt=negative_prompt, width=upscaled_width, height=upscaled_height, num_frames=num_frames, denoise_strength=0.4, # Effectively, 4 inference steps out of 10 num_inference_steps=10, latents=upscaled_latents, decode_timestep=0.05, decode_noise_scale=0.025, image_cond_noise_scale=0.0, guidance_scale=5.0, guidance_rescale=0.7, generator=torch.Generator().manual_seed(0), output_type="pil", ).frames[0] # 4. Downscale the video to the expected resolution video = [frame.resize((expected_width, expected_height)) for frame in video] export_to_video(video, "output.mp4", fps=24)
LTX-Video 0.9.7 distilled model is guidance and timestep-distilled to speedup generation. It requires
guidance_scale
to be set to1.0
andnum_inference_steps
should be set between4
and10
for good generation quality. You should also use the following custom timesteps for the best results.- Base model inference to prepare for upscaling:
[1000, 993, 987, 981, 975, 909, 725, 0.03]
. - Upscaling:
[1000, 909, 725, 421, 0]
.
Show example code
import torch from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition from diffusers.utils import export_to_video, load_video pipeline = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16) pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipeline.vae, torch_dtype=torch.bfloat16) pipeline.to("cuda") pipe_upsample.to("cuda") pipeline.vae.enable_tiling() def round_to_nearest_resolution_acceptable_by_vae(height, width): height = height - (height % pipeline.vae_temporal_compression_ratio) width = width - (width % pipeline.vae_temporal_compression_ratio) return height, width prompt = """ artistic anatomical 3d render, utlra quality, human half full male body with transparent skin revealing structure instead of organs, muscular, intricate creative patterns, monochromatic with backlighting, lightning mesh, scientific concept art, blending biology with botany, surreal and ethereal quality, unreal engine 5, ray tracing, ultra realistic, 16K UHD, rich details. camera zooms out in a rotating fashion """ negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted" expected_height, expected_width = 768, 1152 downscale_factor = 2 / 3 num_frames = 161 # 1. Generate video at smaller resolution downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor) downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width) latents = pipeline( prompt=prompt, negative_prompt=negative_prompt, width=downscaled_width, height=downscaled_height, num_frames=num_frames, timesteps=[1000, 993, 987, 981, 975, 909, 725, 0.03], decode_timestep=0.05, decode_noise_scale=0.025, image_cond_noise_scale=0.0, guidance_scale=1.0, guidance_rescale=0.7, generator=torch.Generator().manual_seed(0), output_type="latent", ).frames # 2. Upscale generated video using latent upsampler with fewer inference steps # The available latent upsampler upscales the height/width by 2x upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2 upscaled_latents = pipe_upsample( latents=latents, adain_factor=1.0, output_type="latent" ).frames # 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended) video = pipeline( prompt=prompt, negative_prompt=negative_prompt, width=upscaled_width, height=upscaled_height, num_frames=num_frames, denoise_strength=0.999, # Effectively, 4 inference steps out of 5 timesteps=[1000, 909, 725, 421, 0], latents=upscaled_latents, decode_timestep=0.05, decode_noise_scale=0.025, image_cond_noise_scale=0.0, guidance_scale=1.0, guidance_rescale=0.7, generator=torch.Generator().manual_seed(0), output_type="pil", ).frames[0] # 4. Downscale the video to the expected resolution video = [frame.resize((expected_width, expected_height)) for frame in video] export_to_video(video, "output.mp4", fps=24)
- Base model inference to prepare for upscaling:
LTX-Video supports LoRAs with [
~loaders.LTXVideoLoraLoaderMixin.load_lora_weights
].Show example code
import torch from diffusers import LTXConditionPipeline from diffusers.utils import export_to_video, load_image pipeline = LTXConditionPipeline.from_pretrained( "Lightricks/LTX-Video-0.9.5", torch_dtype=torch.bfloat16 ) pipeline.load_lora_weights("Lightricks/LTX-Video-Cakeify-LoRA", adapter_name="cakeify") pipeline.set_adapters("cakeify") # use "CAKEIFY" to trigger the LoRA prompt = "CAKEIFY a person using a knife to cut a cake shaped like a Pikachu plushie" image = load_image("https://huggingface.co/Lightricks/LTX-Video-Cakeify-LoRA/resolve/main/assets/images/pikachu.png") video = pipeline( prompt=prompt, image=image, width=576, height=576, num_frames=161, decode_timestep=0.03, decode_noise_scale=0.025, num_inference_steps=50, ).frames[0] export_to_video(video, "output.mp4", fps=26)
LTX-Video supports loading from single files, such as GGUF checkpoints, with [
loaders.FromOriginalModelMixin.from_single_file
] or [loaders.FromSingleFileMixin.from_single_file
].Show example code
import torch from diffusers.utils import export_to_video from diffusers import LTXPipeline, AutoModel, GGUFQuantizationConfig transformer = AutoModel.from_single_file( "https://huggingface.co/city96/LTX-Video-gguf/blob/main/ltx-video-2b-v0.9-Q3_K_S.gguf" quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16), torch_dtype=torch.bfloat16 ) pipeline = LTXPipeline.from_pretrained( "Lightricks/LTX-Video", transformer=transformer, torch_dtype=torch.bfloat16 )
LTXPipeline
[[autodoc]] LTXPipeline
- all
- call
LTXImageToVideoPipeline
[[autodoc]] LTXImageToVideoPipeline
- all
- call
LTXConditionPipeline
[[autodoc]] LTXConditionPipeline
- all
- call
LTXLatentUpsamplePipeline
[[autodoc]] LTXLatentUpsamplePipeline
- all
- call
LTXPipelineOutput
[[autodoc]] pipelines.ltx.pipeline_output.LTXPipelineOutput