multimodalart's picture
Upload 2025 files
22a452a verified
|
raw
history blame
1.8 kB
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# DreamBooth
[DreamBooth](https://huggingface.co/papers/2208.12242) is a method for generating personalized images of a specific instance. It works by fine-tuning the model on 3-5 images of the subject (for example, a cat) that is associated with a unique identifier (`sks cat`). This allows you to use `sks cat` in your prompt to trigger the model to generate images of your cat in different settings, lighting, poses, and styles.
DreamBooth checkpoints are typically a few GBs in size because it contains the full model weights.
Load the DreamBooth checkpoint with [`~DiffusionPipeline.from_pretrained`] and include the unique identifier in the prompt to activate its generation.
```py
import torch
from diffusers import AutoPipelineForText2Image
pipeline = AutoPipelineForText2Image.from_pretrained(
"sd-dreambooth-library/herge-style",
torch_dtype=torch.float16
).to("cuda")
prompt = "A cute sks herge_style brown bear eating a slice of pizza, stunning color scheme, masterpiece, illustration"
pipeline(prompt).images[0]
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_dreambooth.png" />
</div>