Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2025 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from typing import Tuple, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.utils.constants import ( | |
DECODE_ENDPOINT_FLUX, | |
DECODE_ENDPOINT_HUNYUAN_VIDEO, | |
DECODE_ENDPOINT_SD_V1, | |
DECODE_ENDPOINT_SD_XL, | |
) | |
from diffusers.utils.remote_utils import ( | |
remote_decode, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
slow, | |
torch_all_close, | |
torch_device, | |
) | |
from diffusers.video_processor import VideoProcessor | |
enable_full_determinism() | |
class RemoteAutoencoderKLMixin: | |
shape: Tuple[int, ...] = None | |
out_hw: Tuple[int, int] = None | |
endpoint: str = None | |
dtype: torch.dtype = None | |
scaling_factor: float = None | |
shift_factor: float = None | |
processor_cls: Union[VaeImageProcessor, VideoProcessor] = None | |
output_pil_slice: torch.Tensor = None | |
output_pt_slice: torch.Tensor = None | |
partial_postprocess_return_pt_slice: torch.Tensor = None | |
return_pt_slice: torch.Tensor = None | |
width: int = None | |
height: int = None | |
def get_dummy_inputs(self): | |
inputs = { | |
"endpoint": self.endpoint, | |
"tensor": torch.randn( | |
self.shape, | |
device=torch_device, | |
dtype=self.dtype, | |
generator=torch.Generator(torch_device).manual_seed(13), | |
), | |
"scaling_factor": self.scaling_factor, | |
"shift_factor": self.shift_factor, | |
"height": self.height, | |
"width": self.width, | |
} | |
return inputs | |
def test_no_scaling(self): | |
inputs = self.get_dummy_inputs() | |
if inputs["scaling_factor"] is not None: | |
inputs["tensor"] = inputs["tensor"] / inputs["scaling_factor"] | |
inputs["scaling_factor"] = None | |
if inputs["shift_factor"] is not None: | |
inputs["tensor"] = inputs["tensor"] + inputs["shift_factor"] | |
inputs["shift_factor"] = None | |
processor = self.processor_cls() | |
output = remote_decode( | |
output_type="pt", | |
# required for now, will be removed in next update | |
do_scaling=False, | |
processor=processor, | |
**inputs, | |
) | |
assert isinstance(output, PIL.Image.Image) | |
self.assertTrue(isinstance(output, PIL.Image.Image), f"Expected `PIL.Image.Image` output, got {type(output)}") | |
self.assertEqual(output.height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.height}") | |
self.assertEqual(output.width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.width}") | |
output_slice = torch.from_numpy(np.array(output)[0, -3:, -3:].flatten()) | |
# Increased tolerance for Flux Packed diff [1, 0, 1, 0, 0, 0, 0, 0, 0] | |
self.assertTrue( | |
torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1, atol=1), | |
f"{output_slice}", | |
) | |
def test_output_type_pt(self): | |
inputs = self.get_dummy_inputs() | |
processor = self.processor_cls() | |
output = remote_decode(output_type="pt", processor=processor, **inputs) | |
assert isinstance(output, PIL.Image.Image) | |
self.assertTrue(isinstance(output, PIL.Image.Image), f"Expected `PIL.Image.Image` output, got {type(output)}") | |
self.assertEqual(output.height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.height}") | |
self.assertEqual(output.width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.width}") | |
output_slice = torch.from_numpy(np.array(output)[0, -3:, -3:].flatten()) | |
self.assertTrue( | |
torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1e-2), f"{output_slice}" | |
) | |
# output is visually the same, slice is flaky? | |
def test_output_type_pil(self): | |
inputs = self.get_dummy_inputs() | |
output = remote_decode(output_type="pil", **inputs) | |
self.assertTrue(isinstance(output, PIL.Image.Image), f"Expected `PIL.Image.Image` output, got {type(output)}") | |
self.assertEqual(output.height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.height}") | |
self.assertEqual(output.width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.width}") | |
def test_output_type_pil_image_format(self): | |
inputs = self.get_dummy_inputs() | |
output = remote_decode(output_type="pil", image_format="png", **inputs) | |
self.assertTrue(isinstance(output, PIL.Image.Image), f"Expected `PIL.Image.Image` output, got {type(output)}") | |
self.assertEqual(output.height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.height}") | |
self.assertEqual(output.width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.width}") | |
self.assertEqual(output.format, "png", f"Expected image format `png`, got {output.format}") | |
output_slice = torch.from_numpy(np.array(output)[0, -3:, -3:].flatten()) | |
self.assertTrue( | |
torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1e-2), f"{output_slice}" | |
) | |
def test_output_type_pt_partial_postprocess(self): | |
inputs = self.get_dummy_inputs() | |
output = remote_decode(output_type="pt", partial_postprocess=True, **inputs) | |
self.assertTrue(isinstance(output, PIL.Image.Image), f"Expected `PIL.Image.Image` output, got {type(output)}") | |
self.assertEqual(output.height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.height}") | |
self.assertEqual(output.width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.width}") | |
output_slice = torch.from_numpy(np.array(output)[0, -3:, -3:].flatten()) | |
self.assertTrue( | |
torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1e-2), f"{output_slice}" | |
) | |
def test_output_type_pt_return_type_pt(self): | |
inputs = self.get_dummy_inputs() | |
output = remote_decode(output_type="pt", return_type="pt", **inputs) | |
self.assertTrue(isinstance(output, torch.Tensor), f"Expected `torch.Tensor` output, got {type(output)}") | |
self.assertEqual( | |
output.shape[2], self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.shape[2]}" | |
) | |
self.assertEqual( | |
output.shape[3], self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.shape[3]}" | |
) | |
output_slice = output[0, 0, -3:, -3:].flatten() | |
self.assertTrue( | |
torch_all_close(output_slice, self.return_pt_slice.to(output_slice.dtype), rtol=1e-3, atol=1e-3), | |
f"{output_slice}", | |
) | |
def test_output_type_pt_partial_postprocess_return_type_pt(self): | |
inputs = self.get_dummy_inputs() | |
output = remote_decode(output_type="pt", partial_postprocess=True, return_type="pt", **inputs) | |
self.assertTrue(isinstance(output, torch.Tensor), f"Expected `torch.Tensor` output, got {type(output)}") | |
self.assertEqual( | |
output.shape[1], self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.shape[1]}" | |
) | |
self.assertEqual( | |
output.shape[2], self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.shape[2]}" | |
) | |
output_slice = output[0, -3:, -3:, 0].flatten().cpu() | |
self.assertTrue( | |
torch_all_close(output_slice, self.partial_postprocess_return_pt_slice.to(output_slice.dtype), rtol=1e-2), | |
f"{output_slice}", | |
) | |
def test_do_scaling_deprecation(self): | |
inputs = self.get_dummy_inputs() | |
inputs.pop("scaling_factor", None) | |
inputs.pop("shift_factor", None) | |
with self.assertWarns(FutureWarning) as warning: | |
_ = remote_decode(output_type="pt", partial_postprocess=True, **inputs) | |
self.assertEqual( | |
str(warning.warnings[0].message), | |
"`do_scaling` is deprecated, pass `scaling_factor` and `shift_factor` if required.", | |
str(warning.warnings[0].message), | |
) | |
def test_input_tensor_type_base64_deprecation(self): | |
inputs = self.get_dummy_inputs() | |
with self.assertWarns(FutureWarning) as warning: | |
_ = remote_decode(output_type="pt", input_tensor_type="base64", partial_postprocess=True, **inputs) | |
self.assertEqual( | |
str(warning.warnings[0].message), | |
"input_tensor_type='base64' is deprecated. Using `binary`.", | |
str(warning.warnings[0].message), | |
) | |
def test_output_tensor_type_base64_deprecation(self): | |
inputs = self.get_dummy_inputs() | |
with self.assertWarns(FutureWarning) as warning: | |
_ = remote_decode(output_type="pt", output_tensor_type="base64", partial_postprocess=True, **inputs) | |
self.assertEqual( | |
str(warning.warnings[0].message), | |
"output_tensor_type='base64' is deprecated. Using `binary`.", | |
str(warning.warnings[0].message), | |
) | |
class RemoteAutoencoderKLHunyuanVideoMixin(RemoteAutoencoderKLMixin): | |
def test_no_scaling(self): | |
inputs = self.get_dummy_inputs() | |
if inputs["scaling_factor"] is not None: | |
inputs["tensor"] = inputs["tensor"] / inputs["scaling_factor"] | |
inputs["scaling_factor"] = None | |
if inputs["shift_factor"] is not None: | |
inputs["tensor"] = inputs["tensor"] + inputs["shift_factor"] | |
inputs["shift_factor"] = None | |
processor = self.processor_cls() | |
output = remote_decode( | |
output_type="pt", | |
# required for now, will be removed in next update | |
do_scaling=False, | |
processor=processor, | |
**inputs, | |
) | |
self.assertTrue( | |
isinstance(output, list) and isinstance(output[0], PIL.Image.Image), | |
f"Expected `List[PIL.Image.Image]` output, got {type(output)}", | |
) | |
self.assertEqual( | |
output[0].height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output[0].height}" | |
) | |
self.assertEqual( | |
output[0].width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output[0].width}" | |
) | |
output_slice = torch.from_numpy(np.array(output[0])[0, -3:, -3:].flatten()) | |
self.assertTrue( | |
torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1, atol=1), | |
f"{output_slice}", | |
) | |
def test_output_type_pt(self): | |
inputs = self.get_dummy_inputs() | |
processor = self.processor_cls() | |
output = remote_decode(output_type="pt", processor=processor, **inputs) | |
self.assertTrue( | |
isinstance(output, list) and isinstance(output[0], PIL.Image.Image), | |
f"Expected `List[PIL.Image.Image]` output, got {type(output)}", | |
) | |
self.assertEqual( | |
output[0].height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output[0].height}" | |
) | |
self.assertEqual( | |
output[0].width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output[0].width}" | |
) | |
output_slice = torch.from_numpy(np.array(output[0])[0, -3:, -3:].flatten()) | |
self.assertTrue( | |
torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1, atol=1), | |
f"{output_slice}", | |
) | |
# output is visually the same, slice is flaky? | |
def test_output_type_pil(self): | |
inputs = self.get_dummy_inputs() | |
processor = self.processor_cls() | |
output = remote_decode(output_type="pil", processor=processor, **inputs) | |
self.assertTrue( | |
isinstance(output, list) and isinstance(output[0], PIL.Image.Image), | |
f"Expected `List[PIL.Image.Image]` output, got {type(output)}", | |
) | |
self.assertEqual( | |
output[0].height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output[0].height}" | |
) | |
self.assertEqual( | |
output[0].width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output[0].width}" | |
) | |
def test_output_type_pil_image_format(self): | |
inputs = self.get_dummy_inputs() | |
processor = self.processor_cls() | |
output = remote_decode(output_type="pil", processor=processor, image_format="png", **inputs) | |
self.assertTrue( | |
isinstance(output, list) and isinstance(output[0], PIL.Image.Image), | |
f"Expected `List[PIL.Image.Image]` output, got {type(output)}", | |
) | |
self.assertEqual( | |
output[0].height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output[0].height}" | |
) | |
self.assertEqual( | |
output[0].width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output[0].width}" | |
) | |
output_slice = torch.from_numpy(np.array(output[0])[0, -3:, -3:].flatten()) | |
self.assertTrue( | |
torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1, atol=1), | |
f"{output_slice}", | |
) | |
def test_output_type_pt_partial_postprocess(self): | |
inputs = self.get_dummy_inputs() | |
output = remote_decode(output_type="pt", partial_postprocess=True, **inputs) | |
self.assertTrue( | |
isinstance(output, list) and isinstance(output[0], PIL.Image.Image), | |
f"Expected `List[PIL.Image.Image]` output, got {type(output)}", | |
) | |
self.assertEqual( | |
output[0].height, self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output[0].height}" | |
) | |
self.assertEqual( | |
output[0].width, self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output[0].width}" | |
) | |
output_slice = torch.from_numpy(np.array(output[0])[0, -3:, -3:].flatten()) | |
self.assertTrue( | |
torch_all_close(output_slice, self.output_pt_slice.to(output_slice.dtype), rtol=1, atol=1), | |
f"{output_slice}", | |
) | |
def test_output_type_pt_return_type_pt(self): | |
inputs = self.get_dummy_inputs() | |
output = remote_decode(output_type="pt", return_type="pt", **inputs) | |
self.assertTrue(isinstance(output, torch.Tensor), f"Expected `torch.Tensor` output, got {type(output)}") | |
self.assertEqual( | |
output.shape[3], self.out_hw[0], f"Expected image height {self.out_hw[0]}, got {output.shape[2]}" | |
) | |
self.assertEqual( | |
output.shape[4], self.out_hw[1], f"Expected image width {self.out_hw[0]}, got {output.shape[3]}" | |
) | |
output_slice = output[0, 0, 0, -3:, -3:].flatten() | |
self.assertTrue( | |
torch_all_close(output_slice, self.return_pt_slice.to(output_slice.dtype), rtol=1e-3, atol=1e-3), | |
f"{output_slice}", | |
) | |
def test_output_type_mp4(self): | |
inputs = self.get_dummy_inputs() | |
output = remote_decode(output_type="mp4", return_type="mp4", **inputs) | |
self.assertTrue(isinstance(output, bytes), f"Expected `bytes` output, got {type(output)}") | |
class RemoteAutoencoderKLSDv1Tests( | |
RemoteAutoencoderKLMixin, | |
unittest.TestCase, | |
): | |
shape = ( | |
1, | |
4, | |
64, | |
64, | |
) | |
out_hw = ( | |
512, | |
512, | |
) | |
endpoint = DECODE_ENDPOINT_SD_V1 | |
dtype = torch.float16 | |
scaling_factor = 0.18215 | |
shift_factor = None | |
processor_cls = VaeImageProcessor | |
output_pt_slice = torch.tensor([31, 15, 11, 55, 30, 21, 66, 42, 30], dtype=torch.uint8) | |
partial_postprocess_return_pt_slice = torch.tensor([100, 130, 99, 133, 106, 112, 97, 100, 121], dtype=torch.uint8) | |
return_pt_slice = torch.tensor([-0.2177, 0.0217, -0.2258, 0.0412, -0.1687, -0.1232, -0.2416, -0.2130, -0.0543]) | |
class RemoteAutoencoderKLSDXLTests( | |
RemoteAutoencoderKLMixin, | |
unittest.TestCase, | |
): | |
shape = ( | |
1, | |
4, | |
128, | |
128, | |
) | |
out_hw = ( | |
1024, | |
1024, | |
) | |
endpoint = DECODE_ENDPOINT_SD_XL | |
dtype = torch.float16 | |
scaling_factor = 0.13025 | |
shift_factor = None | |
processor_cls = VaeImageProcessor | |
output_pt_slice = torch.tensor([104, 52, 23, 114, 61, 35, 108, 87, 38], dtype=torch.uint8) | |
partial_postprocess_return_pt_slice = torch.tensor([77, 86, 89, 49, 60, 75, 52, 65, 78], dtype=torch.uint8) | |
return_pt_slice = torch.tensor([-0.3945, -0.3289, -0.2993, -0.6177, -0.5259, -0.4119, -0.5898, -0.4863, -0.3845]) | |
class RemoteAutoencoderKLFluxTests( | |
RemoteAutoencoderKLMixin, | |
unittest.TestCase, | |
): | |
shape = ( | |
1, | |
16, | |
128, | |
128, | |
) | |
out_hw = ( | |
1024, | |
1024, | |
) | |
endpoint = DECODE_ENDPOINT_FLUX | |
dtype = torch.bfloat16 | |
scaling_factor = 0.3611 | |
shift_factor = 0.1159 | |
processor_cls = VaeImageProcessor | |
output_pt_slice = torch.tensor([110, 72, 91, 62, 35, 52, 69, 55, 69], dtype=torch.uint8) | |
partial_postprocess_return_pt_slice = torch.tensor( | |
[202, 203, 203, 197, 195, 193, 189, 188, 178], dtype=torch.uint8 | |
) | |
return_pt_slice = torch.tensor([0.5820, 0.5962, 0.5898, 0.5439, 0.5327, 0.5112, 0.4797, 0.4773, 0.3984]) | |
class RemoteAutoencoderKLFluxPackedTests( | |
RemoteAutoencoderKLMixin, | |
unittest.TestCase, | |
): | |
shape = ( | |
1, | |
4096, | |
64, | |
) | |
out_hw = ( | |
1024, | |
1024, | |
) | |
height = 1024 | |
width = 1024 | |
endpoint = DECODE_ENDPOINT_FLUX | |
dtype = torch.bfloat16 | |
scaling_factor = 0.3611 | |
shift_factor = 0.1159 | |
processor_cls = VaeImageProcessor | |
# slices are different due to randn on different shape. we can pack the latent instead if we want the same | |
output_pt_slice = torch.tensor([96, 116, 157, 45, 67, 104, 34, 56, 89], dtype=torch.uint8) | |
partial_postprocess_return_pt_slice = torch.tensor( | |
[168, 212, 202, 155, 191, 185, 150, 180, 168], dtype=torch.uint8 | |
) | |
return_pt_slice = torch.tensor([0.3198, 0.6631, 0.5864, 0.2131, 0.4944, 0.4482, 0.1776, 0.4153, 0.3176]) | |
class RemoteAutoencoderKLHunyuanVideoTests( | |
RemoteAutoencoderKLHunyuanVideoMixin, | |
unittest.TestCase, | |
): | |
shape = ( | |
1, | |
16, | |
3, | |
40, | |
64, | |
) | |
out_hw = ( | |
320, | |
512, | |
) | |
endpoint = DECODE_ENDPOINT_HUNYUAN_VIDEO | |
dtype = torch.float16 | |
scaling_factor = 0.476986 | |
processor_cls = VideoProcessor | |
output_pt_slice = torch.tensor([112, 92, 85, 112, 93, 85, 112, 94, 85], dtype=torch.uint8) | |
partial_postprocess_return_pt_slice = torch.tensor( | |
[149, 161, 168, 136, 150, 156, 129, 143, 149], dtype=torch.uint8 | |
) | |
return_pt_slice = torch.tensor([0.1656, 0.2661, 0.3157, 0.0693, 0.1755, 0.2252, 0.0127, 0.1221, 0.1708]) | |
class RemoteAutoencoderKLSlowTestMixin: | |
channels: int = 4 | |
endpoint: str = None | |
dtype: torch.dtype = None | |
scaling_factor: float = None | |
shift_factor: float = None | |
width: int = None | |
height: int = None | |
def get_dummy_inputs(self): | |
inputs = { | |
"endpoint": self.endpoint, | |
"scaling_factor": self.scaling_factor, | |
"shift_factor": self.shift_factor, | |
"height": self.height, | |
"width": self.width, | |
} | |
return inputs | |
def test_multi_res(self): | |
inputs = self.get_dummy_inputs() | |
for height in {320, 512, 640, 704, 896, 1024, 1208, 1384, 1536, 1608, 1864, 2048}: | |
for width in {320, 512, 640, 704, 896, 1024, 1208, 1384, 1536, 1608, 1864, 2048}: | |
inputs["tensor"] = torch.randn( | |
(1, self.channels, height // 8, width // 8), | |
device=torch_device, | |
dtype=self.dtype, | |
generator=torch.Generator(torch_device).manual_seed(13), | |
) | |
inputs["height"] = height | |
inputs["width"] = width | |
output = remote_decode(output_type="pt", partial_postprocess=True, **inputs) | |
output.save(f"test_multi_res_{height}_{width}.png") | |
class RemoteAutoencoderKLSDv1SlowTests( | |
RemoteAutoencoderKLSlowTestMixin, | |
unittest.TestCase, | |
): | |
endpoint = DECODE_ENDPOINT_SD_V1 | |
dtype = torch.float16 | |
scaling_factor = 0.18215 | |
shift_factor = None | |
class RemoteAutoencoderKLSDXLSlowTests( | |
RemoteAutoencoderKLSlowTestMixin, | |
unittest.TestCase, | |
): | |
endpoint = DECODE_ENDPOINT_SD_XL | |
dtype = torch.float16 | |
scaling_factor = 0.13025 | |
shift_factor = None | |
class RemoteAutoencoderKLFluxSlowTests( | |
RemoteAutoencoderKLSlowTestMixin, | |
unittest.TestCase, | |
): | |
channels = 16 | |
endpoint = DECODE_ENDPOINT_FLUX | |
dtype = torch.bfloat16 | |
scaling_factor = 0.3611 | |
shift_factor = 0.1159 | |