File size: 13,200 Bytes
135276f
ddcd34b
57d7889
 
a024afa
 
cb62b20
 
3a7f01f
135276f
cb62b20
3a7f01f
135276f
cb62b20
 
a024afa
cb62b20
 
 
a024afa
cb62b20
a024afa
cb62b20
a024afa
cb62b20
 
 
 
a024afa
 
cb62b20
 
 
 
a024afa
cb62b20
 
 
 
 
 
 
 
 
 
 
 
 
a024afa
cb62b20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddcd34b
 
 
 
 
 
 
 
cb62b20
 
 
 
 
 
 
 
a024afa
cb62b20
 
a024afa
cb62b20
 
a024afa
cb62b20
 
a024afa
cb62b20
a024afa
cb62b20
a024afa
cb62b20
a024afa
cb62b20
a024afa
cb62b20
 
 
 
57d7889
0966210
cb62b20
 
 
 
 
 
 
 
 
a024afa
cb62b20
 
 
0966210
cb62b20
a024afa
cb62b20
 
 
 
 
 
 
 
 
 
 
 
a024afa
0966210
 
 
a024afa
0966210
 
 
 
 
 
 
 
 
 
 
 
 
ddcd34b
0966210
 
 
a024afa
0966210
 
 
 
 
 
 
 
 
 
 
ddcd34b
 
 
0966210
 
 
 
 
 
 
 
ddcd34b
 
0966210
cb62b20
0966210
 
 
 
cb62b20
0966210
ddcd34b
 
0966210
 
 
 
 
 
 
 
 
 
 
 
 
 
ddcd34b
0966210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddcd34b
 
 
 
 
 
0966210
 
 
 
 
 
 
 
ddcd34b
 
 
 
 
 
 
 
0966210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a024afa
57d7889
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import gc
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from trl import AutoModelForCausalLMWithValueHead
from safetensors.torch import load_file
import logging
from huggingface_hub import login

# Set up logging
login(token=os.environ.get("LA_NAME"))

# Constants
THRESHOLD = 2  # From Plan2Align

# Initialize device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Load models once
print("Loading models...")
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    device_map="auto",
    torch_dtype=torch.float16
)

class RewardModel:
    def __init__(self, device, tokenizer, torch_dtype=torch.float16):
        self.device = device
        self.tokenizer = tokenizer
        
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
            
        # Set chat template if not already set
        if not hasattr(self.tokenizer, 'chat_template') or self.tokenizer.chat_template is None:
            # Using Llama 3's default chat template
            self.tokenizer.chat_template = "<|begin_of_text|>{% for message in messages %}{{'<|start_header_id|>' + message['role'] + '<|end_header_id|>\n' + message['content'] + '<|eot_id|>'}}{% endfor %}"
        
        print("Loading reward model...")
        self.RM = AutoModelForCausalLMWithValueHead.from_pretrained(
            "ray24724919/plan2align_rm",
            device_map={"": 0},  # Force model to stay on GPU
            torch_dtype=torch_dtype
        )
        self.RM.eval()
        print("Reward model loaded successfully!")
    
    def _create_single_message(self, language, source, translation):
        return [
            {
                "role": "system",
                "content": "You are a helpful translator and only output the result."
            },
            {
                "role": "user",
                "content": f"### Translate this from Chinese to {language}, Chinese:\n{source}\n### {language}:"
            },
            {
                "role": "assistant",
                "content": translation
            }
        ]
    
    def _process_inputs(self, messages):
        try:
            input_ids = self.tokenizer.apply_chat_template(
                messages,
                add_generation_prompt=False,
                return_tensors="pt",
                padding=True,
                truncation=True
            )
            
            attention_mask = torch.ones_like(input_ids)
            
            input_ids = input_ids.to(self.device)
            attention_mask = attention_mask.to(self.device)
            
            if len(input_ids.shape) == 1:
                input_ids = input_ids.unsqueeze(0)
                attention_mask = attention_mask.unsqueeze(0)
            
            return {
                "input_ids": input_ids,
                "attention_mask": attention_mask
            }
            
        except Exception as e:
            logging.error(f"Error processing inputs: {str(e)}")
            raise
    
    def reward_fn(self, language, source, translations):
        try:
            all_rewards = []
            for translation in translations:
                messages = self._create_single_message(language, source, translation)
                inputs = self._process_inputs(messages)
                with torch.no_grad():
                    outputs = self.RM(**inputs, return_value=True)
                    rewards = outputs[2]
                reward = rewards[0, -1].cpu().item()
                all_rewards.append(reward)
            return all_rewards
        except Exception as e:
            logging.error(f"Error in reward_fn: {str(e)}")
            raise

    def get_len(self, language, translations):
        try:
            len_ = 0
            for translation in translations:
                l = self.tokenizer(translation, return_tensors="pt").input_ids.to(device).shape[-1]
                len_ += l
            return len_
        except Exception as e:
            logging.error(f"Error in get_len: {str(e)}")
            raise

# Create reward model instance with the already loaded tokenizer
reward_model = RewardModel(device, tokenizer, torch_dtype=torch.float16)
print("Models loaded successfully!")

# Memory management function
def clear_cache():
    """Clear CUDA cache and run garbage collection to free memory"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()
    return "Cache cleared"

# Helper functions from Plan2Align
def rm_predict_preference(source, translation0, translation1, language="English"):
    translations = [translation0, translation1]
    for t_i in range(len(translations)):
        translations[t_i] = ''.join(translations[t_i]).replace('</s>',' ')
    rewards = reward_model.reward_fn(language, source.replace('</s>',' '), translations)
    best_index = rewards.index(max(rewards))
    return best_index

def rm_find_best_translation(source, translations, language="English"):
    copy_translations = translations.copy()
    
    if len(translations) < 2:
        return translations[0] if translations else None
    
    for t_i in range(len(translations)):
        translations[t_i] = ''.join(translations[t_i]).replace('</s>',' ')
    
    rewards = reward_model.reward_fn(language, ''.join(source).replace('</s>',' '), translations)
    
    print(rewards)
    
    best_index = rewards.index(max(rewards))

    print(f"Total translations length = {len(translations)}, and best translation index is: {best_index}")

    if rewards[best_index] >= THRESHOLD:
        return copy_translations[best_index]
    else:
        return None

def translate_chinese_to_english(chinese_text, target_language="English"):
    # Generate multiple translations
    translations = []
    
    # Generate three different translations with different system prompts
    system_prompts = [
        "You are a meticulous translator. Provide a literal, word-for-word translation that preserves the structure and meaning of each individual word.",
        "You are a professional translator. Deliver a clear, formal, and precise translation that faithfully conveys the original meaning.",
        "You are a creative and expressive translator. Render the text in a vivid and imaginative way, as if narrating a captivating story."
    ]
    
    for prompt in system_prompts:
        messages = [
            {"role": "system", "content": prompt},
            {"role": "user", "content": f"Translate the following Chinese text to {target_language}:\n\n{chinese_text}"}
        ]
        
        inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
        
        outputs = model.generate(
            inputs,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            do_sample=True
        )
        
        translation = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
        translations.append(translation)
    
    # Get rewards for all translations
    rewards = reward_model.reward_fn(target_language, chinese_text.replace('</s>',' '), 
                                    [t.replace('</s>',' ') for t in translations])
    
    # Find the best translation
    best_index = rewards.index(max(rewards))
    best_translation = translations[best_index]
    
    # Return all information
    return {
        "best_translation": best_translation,
        "best_reward": rewards[best_index],
        "all_translations": translations,
        "all_rewards": rewards,
        "best_index": best_index
    }

# Updated process_text function with cache clearing
def process_text(text, target_language="English"):
    if not text.strip():
        return "Please enter some text to translate.", "", "", "", ""
    
    try:
        result = translate_chinese_to_english(text, target_language)
        
        # Format the candidate translations with their rewards
        candidates = []
        for i, (trans, reward) in enumerate(zip(result["all_translations"], result["all_rewards"])):
            marker = "★ " if i == result["best_index"] else ""
            candidates.append(f"{marker}Candidate {i+1} (Reward: {reward:.4f}):\n{trans}\n")
        
        candidates_text = "\n".join(candidates)
        
        # Clear cache after processing
        clear_cache()
        
        return (
            result["best_translation"],
            f"{result['best_reward']:.4f}",
            candidates_text,
            f"Candidate {result['best_index']+1}",
            "Yes" if result["best_reward"] >= THRESHOLD else "No"
        )
    except Exception as e:
        # Clear cache even if there's an error
        clear_cache()
        return f"Error: {str(e)}", "", "", "", ""

# Define available target languages - only the supported ones
target_languages = [
    "English", "Russian", "German", "Japanese", "Korean"
]

# Create an enhanced Gradio interface
with gr.Blocks(title="Test-Time Machine Translation with Plan2Align")
    gr.Markdown("This demo uses the Plan2Align approach to translate Chinese text to your chosen language, showing how the reward model evaluates different translation candidates. Paper: https://arxiv.org/pdf/2502.20795.")
    
    with gr.Row():
        with gr.Column(scale=1):
            source_text = gr.Textbox(
                label="Chinese Text",
                placeholder="Enter Chinese text here...",
                lines=5
            )
            target_language = gr.Dropdown(
                choices=target_languages,
                value="English",
                label="Target Language"
            )
            translate_button = gr.Button("Translate")
            clear_button = gr.Button("Clear Memory Cache")
        
        with gr.Column(scale=2):
            with gr.Tab("Best Translation"):
                best_translation = gr.Textbox(
                    label="Best Translation",
                    lines=5,
                    interactive=False
                )
                best_reward = gr.Textbox(
                    label="Reward Score",
                    interactive=False
                )
                best_candidate = gr.Textbox(
                    label="Best Candidate",
                    interactive=False
                )
                meets_threshold = gr.Textbox(
                    label="Meets Quality Threshold",
                    interactive=False
                )
            
            with gr.Tab("All Candidates"):
                all_candidates = gr.Textbox(
                    label="All Translation Candidates with Rewards",
                    lines=15,
                    interactive=False
                )
            
            cache_status = gr.Textbox(
                label="Cache Status",
                value="Ready",
                interactive=False
            )
    
    # Set up the translation flow
    translate_button.click(
        fn=process_text,
        inputs=[source_text, target_language],
        outputs=[best_translation, best_reward, all_candidates, best_candidate, meets_threshold]
    )
    
    # Add manual cache clearing button
    clear_button.click(
        fn=clear_cache,
        inputs=[],
        outputs=[cache_status]
    )
    
    # Examples with more complex sentences in Traditional Chinese about Taiwan
    gr.Examples(
        examples=[
            ["夜市文化豐富多彩,從士林夜市到饒河街夜市,提供各種美食、遊戲和購物體驗,吸引了無數遊客。", "English"],
            ["台北101曾經是世界最高的建築物,它不僅是台灣的地標,也象徵著經濟成就和創新精神。", "Russian"],
            ["阿里山日出和森林鐵路是台灣最著名的自然景觀之一,每年吸引數十萬遊客前來欣賞雲海和壯麗的日出。", "German"],
            ["珍珠奶茶起源於台灣,現已成為全球流行的飲品,展現了飲食文化對世界的影響力。", "Japanese"],
            ["原住民文化擁有豐富的傳統和藝術表現形式,包括歌舞、編織和木雕,反映了與自然和諧共處的生活智慧。", "Korean"]
        ],
        inputs=[source_text, target_language],
        outputs=[best_translation, best_reward, all_candidates, best_candidate, meets_threshold],
        fn=process_text
    )
    
    gr.Markdown("## How It Works")
    gr.Markdown("""
    1. The system generates three different translations using different translation styles:
       - Literal: A word-for-word translation preserving structure
       - Professional: A clear, formal translation
       - Creative: A vivid, expressive translation
    
    2. The reward model evaluates each translation and assigns a score
    
    3. The translation with the highest reward score is selected as the best
    
    4. A translation meets the quality threshold if its reward score is ≥ 2.0
    """)

if __name__ == "__main__":
    demo.launch()