huckiyang's picture
polish the demo
ddcd34b
raw
history blame
13.2 kB
import os
import gc
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from trl import AutoModelForCausalLMWithValueHead
from safetensors.torch import load_file
import logging
from huggingface_hub import login
# Set up logging
login(token=os.environ.get("LA_NAME"))
# Constants
THRESHOLD = 2 # From Plan2Align
# Initialize device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load models once
print("Loading models...")
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.float16
)
class RewardModel:
def __init__(self, device, tokenizer, torch_dtype=torch.float16):
self.device = device
self.tokenizer = tokenizer
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Set chat template if not already set
if not hasattr(self.tokenizer, 'chat_template') or self.tokenizer.chat_template is None:
# Using Llama 3's default chat template
self.tokenizer.chat_template = "<|begin_of_text|>{% for message in messages %}{{'<|start_header_id|>' + message['role'] + '<|end_header_id|>\n' + message['content'] + '<|eot_id|>'}}{% endfor %}"
print("Loading reward model...")
self.RM = AutoModelForCausalLMWithValueHead.from_pretrained(
"ray24724919/plan2align_rm",
device_map={"": 0}, # Force model to stay on GPU
torch_dtype=torch_dtype
)
self.RM.eval()
print("Reward model loaded successfully!")
def _create_single_message(self, language, source, translation):
return [
{
"role": "system",
"content": "You are a helpful translator and only output the result."
},
{
"role": "user",
"content": f"### Translate this from Chinese to {language}, Chinese:\n{source}\n### {language}:"
},
{
"role": "assistant",
"content": translation
}
]
def _process_inputs(self, messages):
try:
input_ids = self.tokenizer.apply_chat_template(
messages,
add_generation_prompt=False,
return_tensors="pt",
padding=True,
truncation=True
)
attention_mask = torch.ones_like(input_ids)
input_ids = input_ids.to(self.device)
attention_mask = attention_mask.to(self.device)
if len(input_ids.shape) == 1:
input_ids = input_ids.unsqueeze(0)
attention_mask = attention_mask.unsqueeze(0)
return {
"input_ids": input_ids,
"attention_mask": attention_mask
}
except Exception as e:
logging.error(f"Error processing inputs: {str(e)}")
raise
def reward_fn(self, language, source, translations):
try:
all_rewards = []
for translation in translations:
messages = self._create_single_message(language, source, translation)
inputs = self._process_inputs(messages)
with torch.no_grad():
outputs = self.RM(**inputs, return_value=True)
rewards = outputs[2]
reward = rewards[0, -1].cpu().item()
all_rewards.append(reward)
return all_rewards
except Exception as e:
logging.error(f"Error in reward_fn: {str(e)}")
raise
def get_len(self, language, translations):
try:
len_ = 0
for translation in translations:
l = self.tokenizer(translation, return_tensors="pt").input_ids.to(device).shape[-1]
len_ += l
return len_
except Exception as e:
logging.error(f"Error in get_len: {str(e)}")
raise
# Create reward model instance with the already loaded tokenizer
reward_model = RewardModel(device, tokenizer, torch_dtype=torch.float16)
print("Models loaded successfully!")
# Memory management function
def clear_cache():
"""Clear CUDA cache and run garbage collection to free memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return "Cache cleared"
# Helper functions from Plan2Align
def rm_predict_preference(source, translation0, translation1, language="English"):
translations = [translation0, translation1]
for t_i in range(len(translations)):
translations[t_i] = ''.join(translations[t_i]).replace('</s>',' ')
rewards = reward_model.reward_fn(language, source.replace('</s>',' '), translations)
best_index = rewards.index(max(rewards))
return best_index
def rm_find_best_translation(source, translations, language="English"):
copy_translations = translations.copy()
if len(translations) < 2:
return translations[0] if translations else None
for t_i in range(len(translations)):
translations[t_i] = ''.join(translations[t_i]).replace('</s>',' ')
rewards = reward_model.reward_fn(language, ''.join(source).replace('</s>',' '), translations)
print(rewards)
best_index = rewards.index(max(rewards))
print(f"Total translations length = {len(translations)}, and best translation index is: {best_index}")
if rewards[best_index] >= THRESHOLD:
return copy_translations[best_index]
else:
return None
def translate_chinese_to_english(chinese_text, target_language="English"):
# Generate multiple translations
translations = []
# Generate three different translations with different system prompts
system_prompts = [
"You are a meticulous translator. Provide a literal, word-for-word translation that preserves the structure and meaning of each individual word.",
"You are a professional translator. Deliver a clear, formal, and precise translation that faithfully conveys the original meaning.",
"You are a creative and expressive translator. Render the text in a vivid and imaginative way, as if narrating a captivating story."
]
for prompt in system_prompts:
messages = [
{"role": "system", "content": prompt},
{"role": "user", "content": f"Translate the following Chinese text to {target_language}:\n\n{chinese_text}"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(device)
outputs = model.generate(
inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
translation = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
translations.append(translation)
# Get rewards for all translations
rewards = reward_model.reward_fn(target_language, chinese_text.replace('</s>',' '),
[t.replace('</s>',' ') for t in translations])
# Find the best translation
best_index = rewards.index(max(rewards))
best_translation = translations[best_index]
# Return all information
return {
"best_translation": best_translation,
"best_reward": rewards[best_index],
"all_translations": translations,
"all_rewards": rewards,
"best_index": best_index
}
# Updated process_text function with cache clearing
def process_text(text, target_language="English"):
if not text.strip():
return "Please enter some text to translate.", "", "", "", ""
try:
result = translate_chinese_to_english(text, target_language)
# Format the candidate translations with their rewards
candidates = []
for i, (trans, reward) in enumerate(zip(result["all_translations"], result["all_rewards"])):
marker = "★ " if i == result["best_index"] else ""
candidates.append(f"{marker}Candidate {i+1} (Reward: {reward:.4f}):\n{trans}\n")
candidates_text = "\n".join(candidates)
# Clear cache after processing
clear_cache()
return (
result["best_translation"],
f"{result['best_reward']:.4f}",
candidates_text,
f"Candidate {result['best_index']+1}",
"Yes" if result["best_reward"] >= THRESHOLD else "No"
)
except Exception as e:
# Clear cache even if there's an error
clear_cache()
return f"Error: {str(e)}", "", "", "", ""
# Define available target languages - only the supported ones
target_languages = [
"English", "Russian", "German", "Japanese", "Korean"
]
# Create an enhanced Gradio interface
with gr.Blocks(title="Test-Time Machine Translation with Plan2Align")
gr.Markdown("This demo uses the Plan2Align approach to translate Chinese text to your chosen language, showing how the reward model evaluates different translation candidates. Paper: https://arxiv.org/pdf/2502.20795.")
with gr.Row():
with gr.Column(scale=1):
source_text = gr.Textbox(
label="Chinese Text",
placeholder="Enter Chinese text here...",
lines=5
)
target_language = gr.Dropdown(
choices=target_languages,
value="English",
label="Target Language"
)
translate_button = gr.Button("Translate")
clear_button = gr.Button("Clear Memory Cache")
with gr.Column(scale=2):
with gr.Tab("Best Translation"):
best_translation = gr.Textbox(
label="Best Translation",
lines=5,
interactive=False
)
best_reward = gr.Textbox(
label="Reward Score",
interactive=False
)
best_candidate = gr.Textbox(
label="Best Candidate",
interactive=False
)
meets_threshold = gr.Textbox(
label="Meets Quality Threshold",
interactive=False
)
with gr.Tab("All Candidates"):
all_candidates = gr.Textbox(
label="All Translation Candidates with Rewards",
lines=15,
interactive=False
)
cache_status = gr.Textbox(
label="Cache Status",
value="Ready",
interactive=False
)
# Set up the translation flow
translate_button.click(
fn=process_text,
inputs=[source_text, target_language],
outputs=[best_translation, best_reward, all_candidates, best_candidate, meets_threshold]
)
# Add manual cache clearing button
clear_button.click(
fn=clear_cache,
inputs=[],
outputs=[cache_status]
)
# Examples with more complex sentences in Traditional Chinese about Taiwan
gr.Examples(
examples=[
["夜市文化豐富多彩,從士林夜市到饒河街夜市,提供各種美食、遊戲和購物體驗,吸引了無數遊客。", "English"],
["台北101曾經是世界最高的建築物,它不僅是台灣的地標,也象徵著經濟成就和創新精神。", "Russian"],
["阿里山日出和森林鐵路是台灣最著名的自然景觀之一,每年吸引數十萬遊客前來欣賞雲海和壯麗的日出。", "German"],
["珍珠奶茶起源於台灣,現已成為全球流行的飲品,展現了飲食文化對世界的影響力。", "Japanese"],
["原住民文化擁有豐富的傳統和藝術表現形式,包括歌舞、編織和木雕,反映了與自然和諧共處的生活智慧。", "Korean"]
],
inputs=[source_text, target_language],
outputs=[best_translation, best_reward, all_candidates, best_candidate, meets_threshold],
fn=process_text
)
gr.Markdown("## How It Works")
gr.Markdown("""
1. The system generates three different translations using different translation styles:
- Literal: A word-for-word translation preserving structure
- Professional: A clear, formal translation
- Creative: A vivid, expressive translation
2. The reward model evaluates each translation and assigns a score
3. The translation with the highest reward score is selected as the best
4. A translation meets the quality threshold if its reward score is ≥ 2.0
""")
if __name__ == "__main__":
demo.launch()