Spaces:
Sleeping
Sleeping
File size: 11,621 Bytes
8a490ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import os
import tempfile
import sys
import subprocess
import gradio as gr
import numpy as np
import soundfile as sf
import librosa
import torch
import torch.cuda
import gc
# Check if required packages are installed, if not install them
try:
from espnet2.bin.s2t_inference import Speech2Text
import torchaudio
# Try importing espnet_model_zoo specifically
try:
import espnet_model_zoo
print("All packages already installed.")
except ModuleNotFoundError:
print("Installing espnet_model_zoo. This may take a few minutes...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "espnet_model_zoo"])
import espnet_model_zoo
print("espnet_model_zoo installed successfully.")
except ModuleNotFoundError as e:
missing_module = str(e).split("'")[1]
print(f"Installing missing module: {missing_module}")
if missing_module == "espnet2":
print("Installing ESPnet. This may take a few minutes...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "espnet"])
elif missing_module == "torchaudio":
print("Installing torchaudio. This may take a few minutes...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "torchaudio"])
# Try importing again
try:
from espnet2.bin.s2t_inference import Speech2Text
import torchaudio
# Also check for espnet_model_zoo
try:
import espnet_model_zoo
except ModuleNotFoundError:
print("Installing espnet_model_zoo. This may take a few minutes...")
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "espnet_model_zoo"])
import espnet_model_zoo
print("All required packages installed successfully.")
except ModuleNotFoundError as e:
print(f"Failed to install {str(e).split('No module named ')[1]}. Please install manually.")
raise
# Initialize the model with language option
def load_model():
# Force garbage collection
gc.collect()
torch.cuda.empty_cache()
# Set memory-efficient options
torch.cuda.set_per_process_memory_fraction(0.95) # Use 95% of available memory
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# For memory efficiency, you could try loading with 8-bit quantization
# This requires the bitsandbytes library
# pip install bitsandbytes
model = Speech2Text.from_pretrained(
"espnet/owls_4B_180K",
task_sym="<asr>",
beam_size=1,
device=device
)
return model
# Load the model at startup with English as default
print("Loading multilingual model...")
model = load_model()
print("Model loaded successfully!")
def transcribe_audio(audio_file, language):
"""Process the audio file and return the transcription"""
if audio_file is None:
return "Please upload an audio file or record audio."
# If audio is a tuple (from microphone recording)
if isinstance(audio_file, tuple):
sr, audio_data = audio_file
# Create a temporary file to save the audio
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
temp_path = temp_audio.name
sf.write(temp_path, audio_data, sr)
audio_file = temp_path
# Load and resample the audio file to 16kHz
speech, _ = librosa.load(audio_file, sr=16000)
# Update the language symbol if needed
model.beam_search.hyps = None
model.beam_search.pre_beam_score_key = None
if language != None:
model.lang_sym = language
# Perform ASR
text, *_ = model(speech)[0]
# Clean up temporary file if created
if isinstance(audio_file, str) and audio_file.startswith(tempfile.gettempdir()):
os.unlink(audio_file)
return text
# Function to handle English transcription
def transcribe_english(audio_file):
return transcribe_audio(audio_file, "<eng>")
# Function to handle Chinese transcription
def transcribe_chinese(audio_file):
return transcribe_audio(audio_file, "<zho>")
# Function to handle Japanese transcription
def transcribe_japanese(audio_file):
return transcribe_audio(audio_file, "<jpn>")
# Function to handle Korean transcription
def transcribe_korean(audio_file):
return transcribe_audio(audio_file, "<kor>")
# Function to handle Thai transcription
def transcribe_thai(audio_file):
return transcribe_audio(audio_file, "<tha>")
# Function to handle Italian transcription
def transcribe_italian(audio_file):
return transcribe_audio(audio_file, "<ita>")
# Function to handle German transcription
def transcribe_german(audio_file):
return transcribe_audio(audio_file, "<deu>")
# Create the Gradio interface with tabs
demo = gr.Blocks(title="NVIDIA Research Multilingual Demo")
with demo:
gr.Markdown("# NVIDIA Research Multilingual Demo")
gr.Markdown("Upload or record audio to transcribe up to 150 human languages using the NVIDIA Research (NVR) 9B model. Audio will be automatically resampled to 16kHz.")
with gr.Tabs():
with gr.TabItem("Microphone Recording"):
language_mic = gr.Radio(
["English", "Mandarin", "Japanese", "Korean", "Thai", "Italian", "German"],
label="Select Language",
value="English"
)
with gr.Row():
with gr.Column():
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio")
mic_button = gr.Button("Transcribe Recording")
with gr.Column():
mic_output = gr.Textbox(label="Transcription")
def transcribe_mic(audio, lang):
lang_map = {
"English": "<eng>",
"Chinese": "<zho>",
"Japanese": "<jpn>",
"Korean": "<kor>",
"Thai": "<tha>",
"Italian": "<ita>",
"German": "<deu>"
}
return transcribe_audio(audio, lang_map.get(lang, "<eng>"))
mic_button.click(fn=transcribe_mic, inputs=[mic_input, language_mic], outputs=mic_output)
with gr.TabItem("English"):
with gr.Row():
with gr.Column():
en_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
en_button = gr.Button("Transcribe Speech")
with gr.Column():
en_output = gr.Textbox(label="Speech Transcription")
# Add example if the file exists
if os.path.exists("wav_en_sample_48k.wav"):
gr.Examples(
examples=[["wav_en_sample_48k.wav"]],
inputs=en_input
)
en_button.click(fn=transcribe_english, inputs=en_input, outputs=en_output)
with gr.TabItem("Mandarin"):
with gr.Row():
with gr.Column():
zh_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
zh_button = gr.Button("Transcribe Speech")
with gr.Column():
zh_output = gr.Textbox(label="Speech Transcription")
# Add example if the file exists
if os.path.exists("wav_zh_tw_sample_16k.wav"):
gr.Examples(
examples=[["wav_zh_tw_sample_16k.wav"]],
inputs=zh_input
)
zh_button.click(fn=transcribe_chinese, inputs=zh_input, outputs=zh_output)
with gr.TabItem("Japanese"):
with gr.Row():
with gr.Column():
jp_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
jp_button = gr.Button("Transcribe Speech")
with gr.Column():
jp_output = gr.Textbox(label="Speech Transcription")
# Add example if the file exists
if os.path.exists("wav_jp_sample_48k.wav"):
gr.Examples(
examples=[["wav_jp_sample_48k.wav"]],
inputs=jp_input
)
jp_button.click(fn=transcribe_japanese, inputs=jp_input, outputs=jp_output)
with gr.TabItem("Korean"):
with gr.Row():
with gr.Column():
kr_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
kr_button = gr.Button("Transcribe Speech")
with gr.Column():
kr_output = gr.Textbox(label="Speech Transcription")
# Add example if the file exists
if os.path.exists("wav_kr_sample_48k.wav"):
gr.Examples(
examples=[["wav_kr_sample_48k.wav"]],
inputs=kr_input
)
kr_button.click(fn=transcribe_korean, inputs=kr_input, outputs=kr_output)
with gr.TabItem("Thai"):
with gr.Row():
with gr.Column():
th_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
th_button = gr.Button("Transcribe Speech")
with gr.Column():
th_output = gr.Textbox(label="Speech Transcription")
# Add example if the file exists
if os.path.exists("wav_thai_sample.wav"):
gr.Examples(
examples=[["wav_thai_sample.wav"]],
inputs=th_input
)
th_button.click(fn=transcribe_thai, inputs=th_input, outputs=th_output)
with gr.TabItem("Italian"):
with gr.Row():
with gr.Column():
it_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
it_button = gr.Button("Transcribe Speech")
with gr.Column():
it_output = gr.Textbox(label="Speech Transcription")
# Add example if the file exists
if os.path.exists("wav_it_sample.wav"):
gr.Examples(
examples=[["wav_it_sample.wav"]],
inputs=it_input
)
it_button.click(fn=transcribe_italian, inputs=it_input, outputs=it_output)
with gr.TabItem("German"):
with gr.Row():
with gr.Column():
de_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio")
de_button = gr.Button("Transcribe Speech")
with gr.Column():
de_output = gr.Textbox(label="Speech Transcription")
# Add example if the file exists
if os.path.exists("wav_de_sample.wav"):
gr.Examples(
examples=[["wav_de_sample.wav"]],
inputs=de_input
)
de_button.click(fn=transcribe_german, inputs=de_input, outputs=de_output)
# Launch the app with Hugging Face Spaces compatible settings
if __name__ == "__main__":
demo.launch(share=False)
|