Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,558 Bytes
1d4b9ba bae258c 1d4b9ba bae258c 1d4b9ba bae258c 1d4b9ba bae258c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import math
import PIL
from PIL import Image
import cv2
import numpy as np
from diffusers.utils import load_image
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]):
"""
Draw keypoints on an image.
Args:
image_pil (PIL.Image): Image on which to draw the keypoints.
kps (list): List of keypoints to draw.
color_list (list): List of colors to use for drawing the keypoints.
Returns:
PIL.Image: Image with keypoints drawn on it.
"""
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
# w, h = image_pil.size
# out_img = np.zeros([h, w, 3])
if type(image_pil) == PIL.Image.Image:
out_img = np.array(image_pil)
else:
out_img = image_pil
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly(
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1
)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
def load_and_resize_image(image_path, max_width, max_height, maintain_aspect_ratio=True):
"""
Load and resize an image to the specified dimensions.
Args:
image_path (str): Path to the image file.
max_width (int): Maximum width of the resized image.
max_height (int): Maximum height of the resized image.
maintain_aspect_ratio (bool): Whether to maintain the aspect ratio of the image.
Returns:
PIL.Image: Resized image.
"""
# Open the image
image = load_image(image_path)
# Get the current width and height of the image
current_width, current_height = image.size
if maintain_aspect_ratio:
# Calculate the aspect ratio of the image
aspect_ratio = current_width / current_height
# Calculate the new dimensions based on the max width and height
if current_width / max_width > current_height / max_height:
new_width = max_width
new_height = int(new_width / aspect_ratio)
else:
new_height = max_height
new_width = int(new_height * aspect_ratio)
else:
# Use the max width and height as the new dimensions
new_width = max_width
new_height = max_height
# Ensure the new dimensions are divisible by 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
# Resize the image
resized_image = image.resize((new_width, new_height))
return resized_image
def align_images(image1, image2):
"""
Resize two images to the same dimensions by cropping the larger image(s) to match the smaller one.
Args:
image1 (PIL.Image): First image to be aligned.
image2 (PIL.Image): Second image to be aligned.
Returns:
tuple: A tuple containing two images with the same dimensions.
"""
# Determine the new size by taking the smaller width and height from both images
new_width = min(image1.size[0], image2.size[0])
new_height = min(image1.size[1], image2.size[1])
# Crop both images if necessary
if image1.size != (new_width, new_height):
image1 = image1.crop((0, 0, new_width, new_height))
if image2.size != (new_width, new_height):
image2 = image2.crop((0, 0, new_width, new_height))
return image1, image2
def align_images_2(image1, image2):
"""
Resize and crop the second image to match the dimensions of the first image by
scaling to aspect fill and then center cropping the extra parts.
Args:
image1 (PIL.Image): First image which will act as the reference for alignment.
image2 (PIL.Image): Second image to be aligned to the first image's dimensions.
Returns:
tuple: A tuple containing the first image and the aligned second image.
"""
# Get dimensions of the first image
target_width, target_height = image1.size
# Calculate the aspect ratio of the second image
aspect_ratio = image2.width / image2.height
# Calculate dimensions to aspect fill
if target_width / target_height > aspect_ratio:
# The first image is wider relative to its height than the second image
fill_height = target_height
fill_width = int(fill_height * aspect_ratio)
else:
# The first image is taller relative to its width than the second image
fill_width = target_width
fill_height = int(fill_width / aspect_ratio)
# Resize the second image to fill dimensions
filled_image = image2.resize((fill_width, fill_height), Image.Resampling.LANCZOS)
# Calculate top-left corner of crop box to center crop
left = (fill_width - target_width) / 2
top = (fill_height - target_height) / 2
right = left + target_width
bottom = top + target_height
# Crop the filled image to match the size of the first image
cropped_image = filled_image.crop((int(left), int(top), int(right), int(bottom)))
return image1, cropped_image
|