tts / app.py
okewunmi's picture
Update app.py
6c2dbc0 verified
import os
import sys
import gradio as gr
import torch
import torchaudio
import uroman
import numpy as np
import requests
import hashlib
from transformers import AutoModelForCausalLM, AutoTokenizer
from outetts.wav_tokenizer.decoder import WavTokenizer
# Set up logging
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Clone YarnGPT at startup
if not os.path.exists("yarngpt"):
logger.info("Cloning YarnGPT repository...")
os.system("git clone https://github.com/saheedniyi02/yarngpt.git")
# Add the repository to Python path
sys.path.append("yarngpt")
else:
sys.path.append("yarngpt")
# Import the YarnGPT AudioTokenizer
from yarngpt.audiotokenizer import AudioTokenizerV2
# Constants and paths
MODEL_PATH = "saheedniyi/YarnGPT2b"
WAV_TOKENIZER_CONFIG_URL = "https://huggingface.co/novateur/WavTokenizer-medium-speech-75token/resolve/main/wavtokenizer_mediumdata_frame75_3s_nq1_code4096_dim512_kmeans200_attn.yaml"
WAV_TOKENIZER_MODEL_URL = "https://huggingface.co/novateur/WavTokenizer-large-speech-75token/resolve/main/wavtokenizer_large_speech_320_24k.ckpt"
WAV_TOKENIZER_CONFIG_PATH = "wavtokenizer_config.yaml"
WAV_TOKENIZER_MODEL_PATH = "wavtokenizer_model.ckpt"
# Function to download files with verification
def download_file(url, output_path):
"""Download a file with progress tracking and verification"""
logger.info(f"Downloading {url} to {output_path}")
# Stream the file download
with requests.get(url, stream=True) as response:
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
with open(output_path, 'wb') as f:
downloaded = 0
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
downloaded += len(chunk)
percent = int(100 * downloaded / total_size) if total_size > 0 else 0
if percent % 10 == 0:
logger.info(f"Download progress: {percent}%")
# Verify the file exists and has content
if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
logger.info(f"Successfully downloaded {output_path}")
return True
else:
logger.error(f"Failed to download {output_path}")
return False
# Download the required files
def download_required_files():
# Download config file
if not os.path.exists(WAV_TOKENIZER_CONFIG_PATH) or os.path.getsize(WAV_TOKENIZER_CONFIG_PATH) == 0:
logger.info("Downloading WavTokenizer config...")
if not download_file(WAV_TOKENIZER_CONFIG_URL, WAV_TOKENIZER_CONFIG_PATH):
raise RuntimeError("Failed to download WavTokenizer config")
# Download model file
if not os.path.exists(WAV_TOKENIZER_MODEL_PATH) or os.path.getsize(WAV_TOKENIZER_MODEL_PATH) == 0:
logger.info("Downloading WavTokenizer model...")
if not download_file(WAV_TOKENIZER_MODEL_URL, WAV_TOKENIZER_MODEL_PATH):
raise RuntimeError("Failed to download WavTokenizer model")
# Verify files exist
if not os.path.exists(WAV_TOKENIZER_CONFIG_PATH) or not os.path.exists(WAV_TOKENIZER_MODEL_PATH):
raise RuntimeError("Required files not found")
# Verify files have content
if os.path.getsize(WAV_TOKENIZER_CONFIG_PATH) == 0 or os.path.getsize(WAV_TOKENIZER_MODEL_PATH) == 0:
raise RuntimeError("Downloaded files are empty")
logger.info("All required files are downloaded and verified")
# Initialize the model and tokenizer
def initialize_model():
try:
# Download required files
download_required_files()
logger.info("Initializing AudioTokenizer...")
audio_tokenizer = AudioTokenizerV2(
MODEL_PATH,
WAV_TOKENIZER_MODEL_PATH,
WAV_TOKENIZER_CONFIG_PATH
)
logger.info("Loading YarnGPT model...")
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype="auto"
).to(audio_tokenizer.device)
logger.info("Model initialization complete!")
return model, audio_tokenizer
except Exception as e:
logger.error(f"Failed to initialize model: {str(e)}")
raise
# Initialize the model and tokenizer
logger.info("Starting model initialization...")
try:
model, audio_tokenizer = initialize_model()
except Exception as e:
logger.error(f"Error initializing model: {str(e)}")
# Provide a basic interface to show the error
demo = gr.Interface(
fn=lambda x: f"Model initialization failed: {str(e)}. Please check the space logs for more details.",
inputs=gr.Textbox(label="Error occurred during initialization"),
outputs=gr.Textbox(),
title="YarnGPT - Initialization Error"
)
demo.launch()
# Exit the script
sys.exit(1)
# Available voices and languages
VOICES = ["idera", "jude", "kemi", "tunde", "funmi"]
LANGUAGES = ["english", "yoruba", "igbo", "hausa", "pidgin"]
# Function to generate speech
def generate_speech(text, language, voice, temperature=0.1, rep_penalty=1.1):
if not text:
return None, "Please enter some text to convert to speech."
try:
logger.info(f"Generating speech for text: {text[:50]}...")
# Create prompt
prompt = audio_tokenizer.create_prompt(text, lang=language, speaker_name=voice)
# Tokenize prompt
input_ids = audio_tokenizer.tokenize_prompt(prompt)
# Generate output
output = model.generate(
input_ids=input_ids,
temperature=temperature,
repetition_penalty=rep_penalty,
max_length=4000,
)
# Convert to audio
codes = audio_tokenizer.get_codes(output)
audio = audio_tokenizer.get_audio(codes)
# Save audio to file
temp_audio_path = "output.wav"
torchaudio.save(temp_audio_path, audio, sample_rate=24000)
logger.info("Speech generation complete")
return temp_audio_path, f"Successfully generated speech for: {text[:50]}..."
except Exception as e:
logger.error(f"Error generating speech: {str(e)}")
return None, f"Error generating speech: {str(e)}"
# Example text for demonstration
examples = [
["Hello, my name is Claude. I am an AI assistant created by Anthropic.", "english", "idera"],
["Báwo ni o ṣe wà? Mo ń gbádùn ọjọ́ mi.", "yoruba", "kemi"],
["I don dey come house now, make you prepare food.", "pidgin", "jude"]
]
# Create the Gradio interface
with gr.Blocks(title="YarnGPT - Nigerian Accented Text-to-Speech") as demo:
gr.Markdown("# YarnGPT - Nigerian Accented Text-to-Speech")
gr.Markdown("Generate speech with Nigerian accents using YarnGPT model.")
with gr.Tab("Basic TTS"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Text to convert to speech",
placeholder="Enter text here...",
lines=5
)
language = gr.Dropdown(
label="Language",
choices=LANGUAGES,
value="english"
)
voice = gr.Dropdown(
label="Voice",
choices=VOICES,
value="idera"
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=1.0,
value=0.1,
step=0.1
)
rep_penalty = gr.Slider(
label="Repetition Penalty",
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1
)
generate_btn = gr.Button("Generate Speech")
with gr.Column():
audio_output = gr.Audio(label="Generated Speech")
status_output = gr.Textbox(label="Status")
gr.Examples(
examples=examples,
inputs=[text_input, language, voice],
outputs=[audio_output, status_output],
fn=generate_speech,
cache_examples=False
)
generate_btn.click(
generate_speech,
inputs=[text_input, language, voice, temperature, rep_penalty],
outputs=[audio_output, status_output]
)
gr.Markdown("""
## About YarnGPT
YarnGPT is a text-to-speech model with Nigerian accents. It supports multiple languages and voices.
### Credits
- Model by [saheedniyi](https://huggingface.co/saheedniyi/YarnGPT2b)
- [Original Repository](https://github.com/saheedniyi02/yarngpt)
""")
# Launch the app
if __name__ == "__main__":
demo.launch()