|
|
|
import cv2 |
|
import mediapipe as mp |
|
import numpy as np |
|
from scipy.interpolate import interp1d |
|
import time |
|
import os |
|
import tempfile |
|
|
|
class PoseDetector: |
|
def __init__(self): |
|
self.mp_pose = mp.solutions.pose |
|
self.pose = self.mp_pose.Pose( |
|
min_detection_confidence=0.5, |
|
min_tracking_confidence=0.5 |
|
) |
|
|
|
def detect_pose(self, frame): |
|
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |
|
results = self.pose.process(rgb_frame) |
|
return results.pose_landmarks if results.pose_landmarks else None |
|
|
|
class DanceGenerator: |
|
def __init__(self): |
|
self.prev_moves = [] |
|
self.style_memory = [] |
|
self.rhythm_patterns = [] |
|
|
|
def generate_dance_sequence(self, all_poses, mode, total_frames, frame_size): |
|
height, width = frame_size |
|
sequence = [] |
|
|
|
if mode == "Sync Partner": |
|
sequence = self._generate_sync_sequence(all_poses, total_frames, frame_size) |
|
else: |
|
sequence = self._generate_creative_sequence(all_poses, total_frames, frame_size) |
|
|
|
return sequence |
|
|
|
def _generate_sync_sequence(self, all_poses, total_frames, frame_size): |
|
height, width = frame_size |
|
sequence = [] |
|
|
|
|
|
rhythm_window = 10 |
|
beat_positions = self._detect_dance_beats(all_poses, rhythm_window) |
|
|
|
pose_arrays = [] |
|
for pose in all_poses: |
|
if pose is not None: |
|
pose_arrays.append(self._landmarks_to_array(pose)) |
|
else: |
|
pose_arrays.append(None) |
|
|
|
for i in range(total_frames): |
|
frame = np.zeros((height, width, 3), dtype=np.uint8) |
|
|
|
if pose_arrays[i] is not None: |
|
|
|
mirrored = self._mirror_movements(pose_arrays[i]) |
|
|
|
|
|
if i in beat_positions: |
|
mirrored = self._enhance_movement_on_beat(mirrored) |
|
|
|
if i > 0 and pose_arrays[i-1] is not None: |
|
mirrored = self._smooth_transition(pose_arrays[i-1], mirrored, 0.3) |
|
|
|
frame = self._create_enhanced_dance_frame( |
|
mirrored, |
|
frame_size, |
|
add_effects=True |
|
) |
|
|
|
sequence.append(frame) |
|
|
|
return sequence |
|
|
|
def _detect_dance_beats(self, poses, window_size): |
|
"""Detect main beats in the dance sequence""" |
|
beat_positions = [] |
|
|
|
if len(poses) < window_size: |
|
return beat_positions |
|
|
|
for i in range(window_size, len(poses)): |
|
if poses[i] is not None and poses[i-1] is not None: |
|
curr_pose = self._landmarks_to_array(poses[i]) |
|
prev_pose = self._landmarks_to_array(poses[i-1]) |
|
|
|
|
|
movement = np.mean(np.abs(curr_pose - prev_pose)) |
|
|
|
|
|
if movement > np.mean(self.rhythm_patterns) + np.std(self.rhythm_patterns): |
|
beat_positions.append(i) |
|
|
|
return beat_positions |
|
|
|
def _enhance_movement_on_beat(self, pose): |
|
"""Enhance movements during detected beats""" |
|
|
|
center = np.mean(pose, axis=0) |
|
enhanced_pose = pose.copy() |
|
|
|
for i in range(len(pose)): |
|
|
|
vector = pose[i] - center |
|
enhanced_pose[i] = center + vector * 1.2 |
|
|
|
return enhanced_pose |
|
|
|
def _generate_creative_sequence(self, all_poses, total_frames, frame_size): |
|
"""Generate creative dance sequence based on style""" |
|
height, width = frame_size |
|
sequence = [] |
|
|
|
|
|
style_patterns = self._analyze_style_patterns(all_poses) |
|
|
|
|
|
for i in range(total_frames): |
|
frame = np.zeros((height, width, 3), dtype=np.uint8) |
|
|
|
|
|
new_pose = self._generate_style_based_pose(style_patterns, i/total_frames) |
|
|
|
if new_pose is not None: |
|
frame = self._create_enhanced_dance_frame( |
|
new_pose, |
|
frame_size, |
|
add_effects=True |
|
) |
|
|
|
sequence.append(frame) |
|
|
|
return sequence |
|
|
|
def _analyze_style_patterns(self, poses): |
|
"""Enhanced style analysis including rhythm and movement patterns""" |
|
patterns = [] |
|
rhythm_data = [] |
|
|
|
for i in range(1, len(poses)): |
|
if poses[i] is not None and poses[i-1] is not None: |
|
|
|
curr_pose = self._landmarks_to_array(poses[i]) |
|
prev_pose = self._landmarks_to_array(poses[i-1]) |
|
|
|
|
|
velocity = np.mean(np.abs(curr_pose - prev_pose), axis=0) |
|
rhythm_data.append(velocity) |
|
|
|
|
|
pattern_info = { |
|
'pose': curr_pose, |
|
'velocity': velocity, |
|
'acceleration': velocity if i == 1 else velocity - prev_velocity |
|
} |
|
patterns.append(pattern_info) |
|
prev_velocity = velocity |
|
|
|
self.rhythm_patterns = rhythm_data |
|
return patterns |
|
|
|
def _generate_style_based_pose(self, patterns, progress): |
|
"""Generate new pose based on style patterns and progress""" |
|
if not patterns: |
|
return None |
|
|
|
|
|
num_patterns = len(patterns) |
|
pattern_idx = int(progress * (num_patterns - 1)) |
|
|
|
if pattern_idx < num_patterns - 1: |
|
t = progress * (num_patterns - 1) - pattern_idx |
|
|
|
pose1 = patterns[pattern_idx]['pose'] |
|
pose2 = patterns[pattern_idx + 1]['pose'] |
|
pose = self._interpolate_poses(pose1, pose2, t) |
|
else: |
|
pose = patterns[-1]['pose'] |
|
|
|
return pose |
|
|
|
def _interpolate_poses(self, pose1, pose2, t): |
|
"""Smoothly interpolate between two poses""" |
|
if isinstance(pose1, dict): |
|
pose1 = pose1['pose'] |
|
if isinstance(pose2, dict): |
|
pose2 = pose2['pose'] |
|
return pose1 * (1 - t) + pose2 * t |
|
|
|
def _create_enhanced_dance_frame(self, pose_array, frame_size, add_effects=True): |
|
"""Create enhanced visualization frame with effects""" |
|
height, width = frame_size |
|
|
|
frame = np.zeros((height, width, 3), dtype=np.uint8) |
|
|
|
|
|
points = (pose_array[:, :2] * [width, height]).astype(int) |
|
|
|
|
|
connections = self._get_pose_connections() |
|
|
|
|
|
body_parts = { |
|
'spine': [(11, 23), (23, 24), (11, 12)], |
|
'right_arm': [(11, 13), (13, 15)], |
|
'left_arm': [(12, 14), (14, 16)], |
|
'right_leg': [(23, 25), (25, 27), (27, 29), (29, 31)], |
|
'left_leg': [(24, 26), (26, 28), (28, 30), (30, 32)], |
|
'face': [(0, 1), (1, 2), (2, 3), (3, 7), (0, 4), (4, 5), (5, 6), (6, 8)] |
|
} |
|
|
|
colors = { |
|
'spine': (0, 255, 255), |
|
'right_arm': (0, 255, 0), |
|
'left_arm': (0, 255, 0), |
|
'right_leg': (255, 0, 255), |
|
'left_leg': (255, 0, 255), |
|
'face': (255, 255, 0) |
|
} |
|
|
|
|
|
for part, connections_list in body_parts.items(): |
|
color = colors[part] |
|
for connection in connections_list: |
|
start_idx, end_idx = connection |
|
if start_idx < len(points) and end_idx < len(points): |
|
if add_effects: |
|
self._draw_glowing_line( |
|
frame, |
|
points[start_idx], |
|
points[end_idx], |
|
color, |
|
thickness=3 |
|
) |
|
else: |
|
cv2.line(frame, |
|
tuple(points[start_idx]), |
|
tuple(points[end_idx]), |
|
color, 3) |
|
|
|
|
|
for i, point in enumerate(points): |
|
if add_effects: |
|
|
|
if i in [0,1,2,3,4,5,6,7,8]: |
|
color = (255, 255, 0) |
|
elif i in [11,12,23,24]: |
|
color = (0, 255, 255) |
|
elif i in [13,14,15,16]: |
|
color = (0, 255, 0) |
|
else: |
|
color = (255, 0, 255) |
|
|
|
self._draw_glowing_point(frame, point, color, radius=4) |
|
else: |
|
cv2.circle(frame, tuple(point), 4, (255, 255, 255), -1) |
|
|
|
return frame |
|
|
|
def _draw_glowing_line(self, frame, start, end, color, thickness=3): |
|
"""Draw a line with enhanced neon glow effect""" |
|
|
|
for i in range(3): |
|
alpha = 0.3 - i * 0.1 |
|
thick = thickness + (i * 2) |
|
blur_color = tuple([int(c * alpha) for c in color]) |
|
cv2.line(frame, tuple(start), tuple(end), |
|
blur_color, thick) |
|
|
|
|
|
cv2.line(frame, tuple(start), tuple(end), color, thickness) |
|
|
|
def _draw_glowing_point(self, frame, point, color, radius=4): |
|
"""Draw a point with enhanced neon glow effect""" |
|
|
|
for i in range(3): |
|
alpha = 0.3 - i * 0.1 |
|
r = radius + (i * 2) |
|
blur_color = tuple([int(c * alpha) for c in color]) |
|
cv2.circle(frame, tuple(point), r, |
|
blur_color, -1) |
|
|
|
|
|
cv2.circle(frame, tuple(point), radius, color, -1) |
|
|
|
def _landmarks_to_array(self, landmarks): |
|
"""Convert MediaPipe landmarks to numpy array""" |
|
points = [] |
|
for landmark in landmarks.landmark: |
|
points.append([landmark.x, landmark.y, landmark.z]) |
|
return np.array(points) |
|
|
|
def _mirror_movements(self, landmarks): |
|
"""Mirror the input movements""" |
|
mirrored = landmarks.copy() |
|
mirrored[:, 0] = 1 - mirrored[:, 0] |
|
return mirrored |
|
|
|
def _update_style_memory(self, landmarks): |
|
"""Update memory of dance style""" |
|
self.style_memory.append(landmarks) |
|
if len(self.style_memory) > 30: |
|
self.style_memory.pop(0) |
|
|
|
def _generate_style_based_moves(self): |
|
"""Generate new moves based on learned style""" |
|
if not self.style_memory: |
|
return np.zeros((33, 3)) |
|
|
|
|
|
base_pose = self.style_memory[-1] |
|
if len(self.style_memory) > 1: |
|
prev_pose = self.style_memory[-2] |
|
t = np.random.random() |
|
new_pose = t * base_pose + (1-t) * prev_pose |
|
else: |
|
new_pose = base_pose |
|
|
|
return new_pose |
|
|
|
def _create_dance_frame(self, pose_array): |
|
"""Create visualization frame from pose array""" |
|
frame = np.zeros((480, 640, 3), dtype=np.uint8) |
|
|
|
|
|
points = (pose_array[:, :2] * [640, 480]).astype(int) |
|
|
|
|
|
connections = self._get_pose_connections() |
|
for connection in connections: |
|
start_idx, end_idx = connection |
|
if start_idx < len(points) and end_idx < len(points): |
|
cv2.line(frame, |
|
tuple(points[start_idx]), |
|
tuple(points[end_idx]), |
|
(0, 255, 0), 2) |
|
|
|
|
|
for point in points: |
|
cv2.circle(frame, tuple(point), 4, (0, 0, 255), -1) |
|
|
|
return frame |
|
|
|
def _get_pose_connections(self): |
|
"""Define connections between pose landmarks""" |
|
return [ |
|
(0, 1), (1, 2), (2, 3), (3, 7), |
|
(0, 4), (4, 5), (5, 6), (6, 8), |
|
(9, 10), (11, 12), (11, 13), (13, 15), |
|
(12, 14), (14, 16), |
|
(11, 23), (12, 24), |
|
(23, 24), (23, 25), (24, 26), |
|
(25, 27), (26, 28), (27, 29), (28, 30), |
|
(29, 31), (30, 32) |
|
] |
|
|
|
def _smooth_transition(self, prev_pose, current_pose, smoothing_factor=0.3): |
|
"""Create smooth transition between poses""" |
|
if prev_pose is None or current_pose is None: |
|
return current_pose |
|
|
|
|
|
smoothed_pose = (1 - smoothing_factor) * prev_pose + smoothing_factor * current_pose |
|
|
|
|
|
|
|
hip_center_idx = 23 |
|
|
|
prev_hip = prev_pose[hip_center_idx] |
|
current_hip = current_pose[hip_center_idx] |
|
smoothed_hip = smoothed_pose[hip_center_idx] |
|
|
|
|
|
for i in range(len(smoothed_pose)): |
|
if i != hip_center_idx: |
|
|
|
prev_relative = prev_pose[i] - prev_hip |
|
current_relative = current_pose[i] - current_hip |
|
|
|
|
|
smoothed_relative = (1 - smoothing_factor) * prev_relative + smoothing_factor * current_relative |
|
|
|
|
|
smoothed_pose[i] = smoothed_hip + smoothed_relative |
|
|
|
return smoothed_pose |
|
|
|
class AIDancePartner: |
|
def __init__(self): |
|
self.pose_detector = PoseDetector() |
|
self.dance_generator = DanceGenerator() |
|
|
|
def process_video(self, video_path, mode="Sync Partner"): |
|
|
|
temp_dir = tempfile.mkdtemp() |
|
output_path = os.path.join(temp_dir, 'output_dance.mp4') |
|
|
|
cap = cv2.VideoCapture(video_path) |
|
|
|
|
|
fps = int(cap.get(cv2.CAP_PROP_FPS)) |
|
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
|
|
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
out = cv2.VideoWriter(output_path, fourcc, fps, |
|
(frame_width * 2, frame_height)) |
|
|
|
|
|
all_poses = [] |
|
frame_count = 0 |
|
|
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
pose_landmarks = self.pose_detector.detect_pose(frame) |
|
all_poses.append(pose_landmarks) |
|
frame_count += 1 |
|
|
|
|
|
ai_sequence = self.dance_generator.generate_dance_sequence( |
|
all_poses, |
|
mode, |
|
total_frames, |
|
(frame_height, frame_width) |
|
) |
|
|
|
|
|
cap.set(cv2.CAP_PROP_POS_FRAMES, 0) |
|
frame_count = 0 |
|
|
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
|
|
ai_frame = ai_sequence[frame_count] |
|
|
|
|
|
combined_frame = np.hstack([frame, ai_frame]) |
|
|
|
|
|
out.write(combined_frame) |
|
frame_count += 1 |
|
|
|
|
|
cap.release() |
|
out.release() |
|
|
|
return output_path |