Spaces:
Build error
Build error
import streamlit as st | |
from datetime import datetime | |
from pymongo import MongoClient | |
import os | |
from openai import OpenAI | |
from dotenv import load_dotenv | |
from bson import ObjectId | |
load_dotenv() | |
# MongoDB setup | |
MONGO_URI = os.getenv('MONGO_URI') | |
client = MongoClient(MONGO_URI) | |
db = client["novascholar_db"] | |
subjective_tests_collection = db["subjective_tests"] | |
subjective_test_evaluation_collection = db["subjective_test_evaluation"] | |
resources_collection = db["resources"] | |
students_collection = db["students"] | |
def evaluate_subjective_answers(session_id, student_id, test_id): | |
""" | |
Generate evaluation and analysis for subjective test answers | |
""" | |
try: | |
# Fetch test and student submission | |
test = subjective_tests_collection.find_one({"_id": test_id}) | |
if not test: | |
return None | |
# Find student's submission | |
submission = next( | |
(sub for sub in test.get('submissions', []) | |
if sub['student_id'] == str(student_id)), | |
None | |
) | |
if not submission: | |
return None | |
# Fetch pre-class materials | |
pre_class_materials = resources_collection.find({"session_id": session_id}) | |
pre_class_content = "" | |
for material in pre_class_materials: | |
if 'text_content' in material: | |
pre_class_content += material['text_content'] + "\n" | |
# Default rubric (can be customized later) | |
default_rubric = """ | |
1. Content Understanding (1-4): | |
- Demonstrates comprehensive understanding of core concepts | |
- Accurately applies relevant theories and principles | |
- Provides specific examples and evidence | |
2. Critical Analysis (1-4): | |
- Shows depth of analysis | |
- Makes meaningful connections | |
- Demonstrates original thinking | |
3. Organization & Clarity (1-4): | |
- Clear structure and flow | |
- Well-developed arguments | |
- Effective use of examples | |
""" | |
# Initialize OpenAI client | |
client = OpenAI(api_key=os.getenv('OPENAI_KEY')) | |
evaluations = [] | |
for i, (question, answer) in enumerate(zip(test['questions'], submission['answers'])): | |
analysis_content = f""" | |
Question: {question['question']} | |
Student Answer: {answer} | |
""" | |
prompt_template = f"""As an educational assessor, evaluate this student's answer based on the provided rubric criteria and pre-class materials. Follow these assessment guidelines: | |
1. Evaluation Process: | |
- Use each rubric criterion (scored 1-4) for internal assessment | |
- Compare response with pre-class materials | |
- Check alignment with all rubric requirements | |
- Calculate final score: sum of criteria scores converted to 10-point scale | |
Pre-class Materials: | |
{pre_class_content[:1000]} # Truncate to avoid token limits | |
Rubric Criteria: | |
{default_rubric} | |
Question and Answer: | |
{analysis_content} | |
Provide your assessment in the following format: | |
**Score and Evidence** | |
- Score: [X]/10 | |
- Evidence for deduction: [One-line reference to most significant gap or inaccuracy] | |
**Key Areas for Improvement** | |
- [Concise improvement point 1] | |
- [Concise improvement point 2] | |
- [Concise improvement point 3] | |
""" | |
# Generate evaluation using OpenAI | |
response = client.chat.completions.create( | |
model="gpt-4o-mini", | |
messages=[{"role": "user", "content": prompt_template}], | |
max_tokens=500, | |
temperature=0.4 | |
) | |
evaluations.append({ | |
"question_number": i + 1, | |
"question": question['question'], | |
"answer": answer, | |
"evaluation": response.choices[0].message.content | |
}) | |
# Store evaluation in MongoDB | |
evaluation_doc = { | |
"test_id": test_id, | |
"student_id": student_id, | |
"session_id": session_id, | |
"evaluations": evaluations, | |
"evaluated_at": datetime.utcnow() | |
} | |
subjective_test_evaluation_collection.insert_one(evaluation_doc) | |
return evaluation_doc | |
except Exception as e: | |
print(f"Error in evaluate_subjective_answers: {str(e)}") | |
return None | |
def display_evaluation_to_faculty(session_id, student_id, course_id): | |
""" | |
Display interface for faculty to generate and view evaluations | |
""" | |
st.header("Evaluate Subjective Tests") | |
try: | |
# Fetch available tests | |
tests = list(subjective_tests_collection.find({ | |
"session_id": str(session_id), | |
"status": "active" | |
})) | |
if not tests: | |
st.info("No subjective tests found for this session.") | |
return | |
# Select test | |
test_options = { | |
f"{test['title']} (Created: {test['created_at'].strftime('%Y-%m-%d %H:%M')})" if 'created_at' in test else test['title']: test['_id'] | |
for test in tests | |
} | |
if test_options: | |
selected_test = st.selectbox( | |
"Select Test to Evaluate", | |
options=list(test_options.keys()) | |
) | |
if selected_test: | |
test_id = test_options[selected_test] | |
test = subjective_tests_collection.find_one({"_id": test_id}) | |
if test: | |
submissions = test.get('submissions', []) | |
if not submissions: | |
st.warning("No submissions found for this test.") | |
return | |
# Create a dropdown for student submissions | |
student_options = { | |
f"{students_collection.find_one({'_id': ObjectId(sub['student_id'])})['full_name']} (Submitted: {sub['submitted_at'].strftime('%Y-%m-%d %H:%M')})": sub['student_id'] | |
for sub in submissions | |
} | |
selected_student = st.selectbox( | |
"Select Student Submission", | |
options=list(student_options.keys()) | |
) | |
if selected_student: | |
student_id = student_options[selected_student] | |
submission = next(sub for sub in submissions if sub['student_id'] == student_id) | |
st.markdown(f"**Submission Date:** {submission.get('submitted_at', 'No submission date')}") | |
st.markdown("---") | |
# Display questions and answers | |
st.subheader("Submission Details") | |
for i, (question, answer) in enumerate(zip(test['questions'], submission['answers'])): | |
st.markdown(f"**Question {i+1}:** {question['question']}") | |
st.markdown(f"**Answer:** {answer}") | |
st.markdown("---") | |
# Check for existing evaluation | |
existing_eval = subjective_test_evaluation_collection.find_one({ | |
"test_id": test_id, | |
"student_id": student_id, | |
"session_id": str(session_id) | |
}) | |
if existing_eval: | |
st.subheader("Evaluation Results") | |
for eval_item in existing_eval['evaluations']: | |
st.markdown(f"### Evaluation for Question {eval_item['question_number']}") | |
st.markdown(eval_item['evaluation']) | |
st.markdown("---") | |
st.success("✓ Evaluation completed") | |
if st.button("Regenerate Evaluation", key=f"regenerate_{student_id}_{test_id}"): | |
with st.spinner("Regenerating evaluation..."): | |
evaluation = evaluate_subjective_answers( | |
str(session_id), | |
student_id, | |
test_id | |
) | |
if evaluation: | |
st.success("Evaluation regenerated successfully!") | |
st.rerun() | |
else: | |
st.error("Error regenerating evaluation.") | |
else: | |
st.subheader("Generate Evaluation") | |
if st.button("Generate Evaluation", key=f"evaluate_{student_id}_{test_id}"): | |
with st.spinner("Generating evaluation..."): | |
evaluation = evaluate_subjective_answers( | |
str(session_id), | |
student_id, | |
test_id | |
) | |
if evaluation: | |
st.success("Evaluation generated successfully!") | |
st.markdown("### Generated Evaluation") | |
for eval_item in evaluation['evaluations']: | |
st.markdown(f"#### Question {eval_item['question_number']}") | |
st.markdown(eval_item['evaluation']) | |
st.markdown("---") | |
st.rerun() | |
else: | |
st.error("Error generating evaluation.") | |
except Exception as e: | |
st.error(f"An error occurred while loading the evaluations: {str(e)}") | |
print(f"Error in display_evaluation_to_faculty: {str(e)}") |