VLM-R1-OVD / app.py
qq-hzlh's picture
change label format
da0ad7a
import re
import torch
import json_repair
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from PIL import Image, ImageDraw
def draw_bbox(image, annotation):
x1, y1, x2, y2 = annotation["bbox_2d"]
label = annotation["label"]
draw = ImageDraw.Draw(image)
# 绘制边界框
draw.rectangle((x1, y1, x2, y2), outline="red", width=5)
# 绘制标签文本
font_size = 20
text_position = (x1, y1 - font_size - 5) if y1 > font_size + 5 else (x1, y2 + 5)
try:
draw.text(text_position, label, fill="red", font_size = font_size)
except Exception as e:
print(f"文本绘制错误: {e}")
# 如果默认绘制失败,使用简单的方式绘制文本
draw.text(text_position, label, fill="red")
return image
def draw_bboxes(image, annotations):
"""绘制多个边界框和标签"""
result_image = image.copy()
for annotation in annotations:
result_image = draw_bbox(result_image, annotation)
return result_image
def extract_bbox_answer(content):
# Extract content between <answer> and </answer> if present
answer_matches = re.findall(r'<answer>(.*?)</answer>', content, re.DOTALL)
if answer_matches:
# Use the last match
text = answer_matches[-1]
else:
text = content
# 使用json_repair修复JSON
try:
data = json_repair.loads(text)
if isinstance(data, list) and len(data) > 0:
return data
else:
return []
except Exception as e:
print(f"JSON解析错误: {e}")
return []
import spaces
@spaces.GPU
def process_image_and_text(image, text):
"""Process image and text input, return thinking process and bbox"""
labels = text.split(",")
question = f"First thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think><answer> answer here </answer>. Please carefully check the image and detect the following objects: {labels}. "
question = question + "Output the bbox coordinates of detected objects in <answer></answer>. The bbox coordinates in Markdown format should be: \n```json\n[{\"bbox_2d\": [x1, y1, x2, y2], \"label\": \"object name\"}]\n```\n If no targets are detected in the image, simply respond with \"None\"."
print("question: ", question)
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": question},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = processor(
text=[text],
images=image,
return_tensors="pt",
padding=True,
padding_side="left",
add_special_tokens=False,
)
inputs = inputs.to("cuda")
with torch.no_grad():
generated_ids = model.generate(**inputs, use_cache=True, max_new_tokens=1024, do_sample=False)
generated_ids_trimmed = [
out_ids[len(inputs.input_ids[0]):] for out_ids in generated_ids
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True
)[0]
print("output_text: ", output_text)
# Extract thinking process
think_match = re.search(r'<think>(.*?)</think>', output_text, re.DOTALL)
thinking_process = think_match.group(1).strip() if think_match else "No thinking process found"
answer_match = re.search(r'<answer>(.*?)</answer>', output_text, re.DOTALL)
answer_output = answer_match.group(1).strip() if answer_match else "No answer extracted"
# Get bbox and draw
bbox = extract_bbox_answer(output_text)
# Draw bbox on the image
result_image = image.copy()
result_image = draw_bboxes(result_image, bbox)
return thinking_process, answer_output,result_image
if __name__ == "__main__":
import gradio as gr
model_path = "omlab/VLM-R1-Qwen2.5VL-3B-OVD-0321"
# device = "cuda" if torch.cuda.is_available() else "cpu"
device = "cuda"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
model.to(device)
processor = AutoProcessor.from_pretrained(model_path)
def gradio_interface(image, text):
thinking, output,result_image = process_image_and_text(image, text)
return thinking, output, result_image
demo = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Textbox(label="Objects to detect (separated by ,)")
],
outputs=[
gr.Textbox(label="Thinking Process"),
gr.Textbox(label="Response"),
gr.Image(type="pil", label="Result with Bbox")
],
title="Open-Vocabulary Object Detection Demo",
description="Upload an image and input description text, the system will return the thinking process and region annotation. \n\nOur GitHub: [VLM-R1](https://github.com/om-ai-lab/VLM-R1/tree/main)",
examples=[
["examples/image1.jpg", "person"],
["examples/image2.jpg", "drink,fruit"],
["examples/image3.png", "keyboard,white cup,laptop"],
],
cache_examples=False,
examples_per_page=10
)
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)