File size: 6,777 Bytes
cdeb7b2
1d6a862
 
cdeb7b2
1d6a862
81c9675
cdeb7b2
1d6a862
c5a8c72
 
 
6a9593b
add9a1c
 
 
 
 
 
 
 
61c92f4
807b3b1
 
 
 
 
61c92f4
 
 
 
 
 
 
807b3b1
61c92f4
 
 
 
 
 
 
 
 
 
 
 
 
 
add9a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
807b3b1
81c9675
6bba7ce
81c9675
 
6bba7ce
81c9675
 
 
 
 
 
 
 
 
 
1d6a862
4bca50c
 
 
 
 
 
 
 
 
 
cdeb7b2
4bca50c
 
0d9856e
4bca50c
7acded7
81c9675
 
 
7acded7
81c9675
b26952f
7acded7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81c9675
0d9856e
1d6a862
0d9856e
 
 
 
81c9675
 
 
6bba7ce
81c9675
 
 
0d9856e
 
 
 
81c9675
 
 
 
 
 
 
0d9856e
 
 
cdeb7b2
81c9675
 
 
 
 
 
cdeb7b2
 
4bca50c
 
 
1d6a862
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gradio as gr
from gradio_client import Client, handle_file
import os

# Define your Hugging Face token (make sure to set it as an environment variable)
HF_TOKEN = os.getenv("HF_TOKEN")  # Replace with your actual token if not using an environment variable

# Initialize the Gradio Client for the specified API
#client = Client("on1onmangoes/CNIHUB10724v10", hf_token=HF_TOKEN)
client = Client("on1onmangoes/CNIHUB101324v10", hf_token=HF_TOKEN)
# on1onmangoes/CNIHUB101324v10


# Here's how you can fix it:

# Update the conversation history within the function.
# Return the updated history along with any other required outputs.


# Function to handle chat API call
# Function to handle chat API call
def stream_chat_with_rag(
    message: str,
    history: list,
    client_name: str,
    system_prompt: str,
    num_retrieved_docs: int,
    num_docs_final: int,
    temperature: float,
    max_new_tokens: int,
    top_p: float,
    top_k: int,
    penalty: float,
):
    # Use the parameters provided by the UI
    response = client.predict(
        message=message,
        client_name=client_name,
        system_prompt=system_prompt,
        num_retrieved_docs=num_retrieved_docs,
        num_docs_final=num_docs_final,
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        top_k=top_k,
        penalty=penalty,
        api_name="/chat"
    )
    
    # Update the conversation history
    history = history + [(message, response)]
    
    # Return the assistant's reply and the updated history
    return "", history


# # Function to handle chat API call
# def stream_chat_with_rag(
#     message: str,
#     history: list,
#     client_name: str,
#     system_prompt: str,
#     num_retrieved_docs: int,
#     num_docs_final: int,
#     temperature: float,
#     max_new_tokens: int,
#     top_p: float,
#     top_k: int,
#     penalty: float,
# ):
#     # Use the parameters provided by the UI
#     response = client.predict(
#         message=message,
#         client_name=client_name,
#         system_prompt=system_prompt,
#         num_retrieved_docs=num_retrieved_docs,
#         num_docs_final=num_docs_final,
#         temperature=temperature,
#         max_new_tokens=max_new_tokens,
#         top_p=top_p,
#         top_k=top_k,
#         penalty=penalty,
#         api_name="/chat"
#     )
#     # Return the assistant's reply
#     return response

# Function to handle PDF processing API call
def process_pdf(pdf_file):
    return client.predict(
        pdf_file=handle_file(pdf_file),
        client_name="rosariarossi",  # Hardcoded client name
        api_name="/process_pdf2"
    )[1]  # Return only the result string

# Function to handle search API call
def search_api(query):
    return client.predict(query=query, api_name="/search_with_confidence")

# Function to handle RAG API call
def rag_api(question):
    return client.predict(question=question, api_name="/answer_with_rag")

# CSS for custom styling
CSS = """
# chat-container {
    height: 100vh;
}
"""

# Title for the application
TITLE = "<h1 style='text-align:center;'>My Gradio Chat App</h1>"

# Create the Gradio Blocks interface
with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    with gr.Tab("Chat"):
        chatbot = gr.Chatbot()  # Create a chatbot interface

        chat_interface = gr.ChatInterface(
            fn=stream_chat_with_rag,
            chatbot=chatbot,
            additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
            additional_inputs=[
                gr.Dropdown(['rosariarossi','bianchifiordaliso','lorenzoverdi'],value="rosariarossi",label="Select Client", render=False,),
                gr.Textbox(
                    value="You are an expert assistant",
                    label="System Prompt",
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=10,
                    step=1,
                    value=10,
                    label="Number of Initial Documents to Retrieve",
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=10,
                    step=1,
                    value=9,
                    label="Number of Final Documents to Retrieve",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.2,
                    maximum=1,
                    step=0.1,
                    value=0,
                    label="Temperature",
                    render=False,
                ),
                gr.Slider(
                    minimum=128,
                    maximum=8192,
                    step=1,
                    value=1024,
                    label="Max new tokens",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=1.0,
                    label="Top P",
                    render=False,
                ),
                gr.Slider(
                    minimum=1,
                    maximum=20,
                    step=1,
                    value=20,
                    label="Top K",
                    render=False,
                ),
                gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    step=0.1,
                    value=1.2,
                    label="Repetition Penalty",
                    render=False,
                ),
            ],
        )

    with gr.Tab("Process PDF"):
        pdf_input = gr.File(label="Upload PDF File")
        pdf_output = gr.Textbox(label="PDF Result", interactive=False)

        pdf_button = gr.Button("Process PDF")
        pdf_button.click(
            process_pdf,
            inputs=[pdf_input],
            outputs=pdf_output
        )

    with gr.Tab("Search"):
        query_input = gr.Textbox(label="Enter Search Query")
        search_output = gr.Textbox(label="Search Confidence Result", interactive=False)

        search_button = gr.Button("Search")
        search_button.click(
            search_api,
            inputs=query_input,
            outputs=search_output
        )

    with gr.Tab("Answer with RAG"):
        question_input = gr.Textbox(label="Enter Question for RAG")
        rag_output = gr.Textbox(label="RAG Answer Result", interactive=False)

        rag_button = gr.Button("Get Answer")
        rag_button.click(
            rag_api,
            inputs=question_input,
            outputs=rag_output
        )

# Launch the app
if __name__ == "__main__":
    demo.launch()