Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_client import Client, handle_file | |
import os | |
# Define your Hugging Face token (make sure to set it as an environment variable) | |
HF_TOKEN = os.getenv("HF_TOKEN") # Replace with your actual token if not using an environment variable | |
# Initialize the Gradio Client for the specified API | |
#client = Client("on1onmangoes/CNIHUB10724v10", hf_token=HF_TOKEN) | |
client = Client("on1onmangoes/CNIHUB101324v10", hf_token=HF_TOKEN) | |
# on1onmangoes/CNIHUB101324v10 | |
# Here's how you can fix it: | |
# Update the conversation history within the function. | |
# Return the updated history along with any other required outputs. | |
# Function to handle chat API call | |
# Function to handle chat API call | |
def stream_chat_with_rag( | |
message: str, | |
history: list, | |
client_name: str, | |
system_prompt: str, | |
num_retrieved_docs: int, | |
num_docs_final: int, | |
temperature: float, | |
max_new_tokens: int, | |
top_p: float, | |
top_k: int, | |
penalty: float, | |
): | |
# Use the parameters provided by the UI | |
response = client.predict( | |
message=message, | |
client_name=client_name, | |
system_prompt=system_prompt, | |
num_retrieved_docs=num_retrieved_docs, | |
num_docs_final=num_docs_final, | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
top_k=top_k, | |
penalty=penalty, | |
api_name="/chat" | |
) | |
# Update the conversation history | |
history = history + [(message, response)] | |
# Return the assistant's reply and the updated history | |
return "", history | |
# # Function to handle chat API call | |
# def stream_chat_with_rag( | |
# message: str, | |
# history: list, | |
# client_name: str, | |
# system_prompt: str, | |
# num_retrieved_docs: int, | |
# num_docs_final: int, | |
# temperature: float, | |
# max_new_tokens: int, | |
# top_p: float, | |
# top_k: int, | |
# penalty: float, | |
# ): | |
# # Use the parameters provided by the UI | |
# response = client.predict( | |
# message=message, | |
# client_name=client_name, | |
# system_prompt=system_prompt, | |
# num_retrieved_docs=num_retrieved_docs, | |
# num_docs_final=num_docs_final, | |
# temperature=temperature, | |
# max_new_tokens=max_new_tokens, | |
# top_p=top_p, | |
# top_k=top_k, | |
# penalty=penalty, | |
# api_name="/chat" | |
# ) | |
# # Return the assistant's reply | |
# return response | |
# Function to handle PDF processing API call | |
def process_pdf(pdf_file): | |
return client.predict( | |
pdf_file=handle_file(pdf_file), | |
client_name="rosariarossi", # Hardcoded client name | |
api_name="/process_pdf2" | |
)[1] # Return only the result string | |
# Function to handle search API call | |
def search_api(query): | |
return client.predict(query=query, api_name="/search_with_confidence") | |
# Function to handle RAG API call | |
def rag_api(question): | |
return client.predict(question=question, api_name="/answer_with_rag") | |
# CSS for custom styling | |
CSS = """ | |
# chat-container { | |
height: 100vh; | |
} | |
""" | |
# Title for the application | |
TITLE = "<h1 style='text-align:center;'>My Gradio Chat App</h1>" | |
# Create the Gradio Blocks interface | |
with gr.Blocks(css=CSS) as demo: | |
gr.HTML(TITLE) | |
with gr.Tab("Chat"): | |
chatbot = gr.Chatbot() # Create a chatbot interface | |
chat_interface = gr.ChatInterface( | |
fn=stream_chat_with_rag, | |
chatbot=chatbot, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Dropdown(['rosariarossi','bianchifiordaliso','lorenzoverdi'],value="rosariarossi",label="Select Client", render=False,), | |
gr.Textbox( | |
value="You are an expert assistant", | |
label="System Prompt", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=10, | |
step=1, | |
value=10, | |
label="Number of Initial Documents to Retrieve", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=10, | |
step=1, | |
value=9, | |
label="Number of Final Documents to Retrieve", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.2, | |
maximum=1, | |
step=0.1, | |
value=0, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=8192, | |
step=1, | |
value=1024, | |
label="Max new tokens", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="Top P", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=20, | |
step=1, | |
value=20, | |
label="Top K", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.2, | |
label="Repetition Penalty", | |
render=False, | |
), | |
], | |
) | |
with gr.Tab("Process PDF"): | |
pdf_input = gr.File(label="Upload PDF File") | |
pdf_output = gr.Textbox(label="PDF Result", interactive=False) | |
pdf_button = gr.Button("Process PDF") | |
pdf_button.click( | |
process_pdf, | |
inputs=[pdf_input], | |
outputs=pdf_output | |
) | |
with gr.Tab("Search"): | |
query_input = gr.Textbox(label="Enter Search Query") | |
search_output = gr.Textbox(label="Search Confidence Result", interactive=False) | |
search_button = gr.Button("Search") | |
search_button.click( | |
search_api, | |
inputs=query_input, | |
outputs=search_output | |
) | |
with gr.Tab("Answer with RAG"): | |
question_input = gr.Textbox(label="Enter Question for RAG") | |
rag_output = gr.Textbox(label="RAG Answer Result", interactive=False) | |
rag_button = gr.Button("Get Answer") | |
rag_button.click( | |
rag_api, | |
inputs=question_input, | |
outputs=rag_output | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |