File size: 1,370 Bytes
7e634ec
461a633
7e634ec
51b7da3
dcb65b5
7e634ec
461a633
 
7e634ec
461a633
 
 
a8ac236
55e8537
4b7b7a5
dcb65b5
 
546e581
b2204c7
69963ba
 
 
b2204c7
 
 
461a633
e42b300
69963ba
 
 
 
 
 
461a633
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import streamlit as st
import time as t
from transformers import pipeline
from pydub import AudioSegment, silence
#import speech_recognition as sr

#pipe = pipeline('sentiment-analysis')
#text = st.text_area('Enter your notes')

#if text:
#    out = pipe(text)
#    st.json(out)

st.markdown("<h1 style = text align:center;'> Group Therapy Notes </h1>",unsafe_allow_html = True)
st.markdown("---",unsafe_allow_html=True)
audio=st.file_uploader("Upload Your Audio File", type=['mp3','wav','m4a'])

if audio:
        pipe = pipeline(model="facebook/wav2vec2-base-960h")
        audio.export("audio.wav", format="wav")
        output = pipe("audio.wav", chunk_length_s=10, stride_length_s=(4, 2))
        st.json(output)
# stride_length_s is a tuple of the left and right stride length.
# With only 1 number, both sides get the same stride, by default
# the stride_length on one side is 1/6th of the chunk_length_s
       
#        chunk.export(str(index)+".wav", format="wav")
#        audio_segment= AudioSegment.from_file(audio)
#       chunks=silence.split_on_silence(audio_segment, min_silence_len=500, silence_thresh= audio_segment.dBFS-20,keep_silence=100)
#        for index, chunk in enumerate (chunks):
#                #output = pipe(audio_segment, chunk_length_s=10, stride_length_s=(4, 2))
#                print (chunk)
#                st.json("wav")