Spaces:
Runtime error
Runtime error
File size: 1,672 Bytes
8243d5f 8e15e86 8243d5f 1f4e988 8243d5f 1f4e988 8243d5f d76175b 8e15e86 d76175b 8e15e86 3f8df5b 8243d5f 8e15e86 8243d5f 8e15e86 8243d5f 8e15e86 8243d5f 8e15e86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import mxnet as mx
import matplotlib.pyplot as plt
import numpy as np
from collections import namedtuple
from mxnet.gluon.data.vision import transforms
import os
import gradio as gr
from PIL import Image
import imageio
import onnxruntime as ort
mx.test_utils.download('https://s3.amazonaws.com/model-server/inputs/kitten.jpg')
mx.test_utils.download('https://s3.amazonaws.com/onnx-model-zoo/synset.txt')
with open('synset.txt', 'r') as f:
labels = [l.rstrip() for l in f]
os.system("wget https://github.com/AK391/models/raw/main/vision/classification/shufflenet/model/shufflenet-v2-10.onnx")
ort_session = ort.InferenceSession("shufflenet-v2-10.onnx")
def predict(path):
input_image = Image.open(path)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0)
outputs = ort_session.run(
None,
{"input": input_batch.astype(np.float32)},
)
a = np.argsort(outputs[0].flatten())
results = {}
for i in a[0:5]:
results[labels[i]]=float(outputs[0][0][i])
return results
title="GoogleNet"
description="GoogLeNet is the name of a convolutional neural network for classification, which competed in the ImageNet Large Scale Visual Recognition Challenge in 2014."
examples=[['catonnx.jpg']]
gr.Interface(predict,gr.inputs.Image(type='filepath'),"label",title=title,description=description,examples=examples).launch(enable_queue=True,debug=True) |