Clémentine commited on
Commit
a9fc93d
1 Parent(s): 8e899eb

filter update 2

Browse files
frontend/src/pages/LeaderboardPage/components/Leaderboard/constants/quickFilters.js CHANGED
@@ -1,8 +1,8 @@
1
  export const QUICK_FILTER_PRESETS = [
2
  {
3
  id: 'edge_device',
4
- label: 'Edge Device Models',
5
- shortDescription: 'Up to 3B parameters',
6
  description: 'Lightweight models optimized for edge devices with limited resources. Ideal for mobile deployment or edge computing environments.',
7
  filters: {
8
  paramsRange: [0, 3],
@@ -11,18 +11,18 @@ export const QUICK_FILTER_PRESETS = [
11
  },
12
  {
13
  id: 'small_models',
14
- label: 'SmolLMs',
15
- shortDescription: 'Up to 7B parameters',
16
  description: 'Lightweight models optimized for consumer hardware with up to one GPU. Ideal for private consumer hardware.',
17
  filters: {
18
- paramsRange: [0, 7],
19
  selectedBooleanFilters: ['is_for_edge_devices']
20
  }
21
  },
22
  {
23
  id: 'medium_models',
24
- label: 'Middle ground models',
25
- shortDescription: '7B-65B parameters',
26
  description: 'Overall balance between performance and required resources.',
27
  filters: {
28
  paramsRange: [7, 70],
@@ -31,8 +31,8 @@ export const QUICK_FILTER_PRESETS = [
31
  },
32
  {
33
  id: 'large_models',
34
- label: 'GPU-rich Models',
35
- shortDescription: '65B+ parameters',
36
  description: 'Large-scale models offering (in theory) the best performance but requiring significant resources. Requires adapted infrastructure.',
37
  filters: {
38
  paramsRange: [85, 140],
 
1
  export const QUICK_FILTER_PRESETS = [
2
  {
3
  id: 'edge_device',
4
+ label: 'For Edge Devices',
5
+ shortDescription: 'Tiny models: Up to 3B parameters',
6
  description: 'Lightweight models optimized for edge devices with limited resources. Ideal for mobile deployment or edge computing environments.',
7
  filters: {
8
  paramsRange: [0, 3],
 
11
  },
12
  {
13
  id: 'small_models',
14
+ label: 'For consumers',
15
+ shortDescription: 'Smol-LMs: Up to 7B parameters',
16
  description: 'Lightweight models optimized for consumer hardware with up to one GPU. Ideal for private consumer hardware.',
17
  filters: {
18
+ paramsRange: [3, 7],
19
  selectedBooleanFilters: ['is_for_edge_devices']
20
  }
21
  },
22
  {
23
  id: 'medium_models',
24
+ label: 'For production',
25
+ shortDescription: 'Medium-sized models: 7B-65B parameters',
26
  description: 'Overall balance between performance and required resources.',
27
  filters: {
28
  paramsRange: [7, 70],
 
31
  },
32
  {
33
  id: 'large_models',
34
+ label: 'For the GPU-rich',
35
+ shortDescription: 'Large models: 65B+ parameters',
36
  description: 'Large-scale models offering (in theory) the best performance but requiring significant resources. Requires adapted infrastructure.',
37
  filters: {
38
  paramsRange: [85, 140],