lysandre's picture
lysandre HF staff
External libraries
1bddee8
raw
history blame
11.8 kB
import collections
import os
from datetime import datetime, timedelta
import json
from http.server import SimpleHTTPRequestHandler, ThreadingHTTPServer
from urllib.parse import parse_qs, urlparse
from huggingface_hub import list_datasets, set_access_token, HfFolder
from datasets import load_dataset, DatasetDict, Dataset
import numpy as np
HF_TOKEN = os.environ['HF_TOKEN']
set_access_token(HF_TOKEN)
HfFolder.save_token(HF_TOKEN)
datasets = {
"stars": load_dataset("open-source-metrics/stars").sort('dates'),
"issues": load_dataset("open-source-metrics/issues").sort('dates'),
"pip": load_dataset("open-source-metrics/pip").sort('day'),
}
external_datasets = {
"stars": load_dataset("open-source-metrics/stars-external").sort('dates'),
"issues": load_dataset("open-source-metrics/issues-external").sort('dates'),
"pip": load_dataset("open-source-metrics/pip-external").sort('day')
}
val = 0
def _range(e):
global val
e['range'] = val
val += 1
current_date = datetime.strptime(e['dates'], "%Y-%m-%dT%H:%M:%SZ")
first_date = datetime.fromtimestamp(1)
week = abs(current_date - first_date).days // 7
e['week'] = week
return e
def _ignore_org_members(e):
global val
e['range_non_org'] = val
if e['type']['authorAssociation'] != 'MEMBER':
val += 1
return e
stars = {}
for k, v in datasets['stars'].items():
stars[k] = v.map(_range)
val = 0
stars_external = {}
for k, v in external_datasets['stars'].items():
stars_external[k] = v.map(_range)
val = 0
issues = {}
for k, v in datasets['issues'].items():
issues[k] = v.map(_range)
val = 0
issues[k] = issues[k].map(_ignore_org_members)
val = 0
issues_external = {}
for k, v in external_datasets['issues'].items():
issues_external[k] = v.map(_range)
val = 0
issues_external[k] = issues_external[k].map(_ignore_org_members)
val = 0
datasets['stars'] = DatasetDict(**stars)
datasets['issues'] = DatasetDict(**issues)
external_datasets['stars'] = DatasetDict(**stars_external)
external_datasets['issues'] = DatasetDict(**issues_external)
def link_values(library_names, returned_values):
previous_values = {library_name: None for library_name in library_names}
for library_name in library_names:
for i in returned_values.keys():
if library_name not in returned_values[i]:
returned_values[i][library_name] = previous_values[library_name]
else:
previous_values[library_name] = returned_values[i][library_name]
return returned_values
def running_mean(x, N, total_length=-1):
cumsum = np.cumsum(np.insert(x, 0, 0))
to_pad = max(total_length - len(cumsum), 0)
return np.pad(cumsum[N:] - cumsum[:-N], (to_pad, 0)) / float(N)
def parse_name_and_options(path):
url = urlparse(path)
query = parse_qs(url.query)
library_names = query.get("input", None)[0]
library_names = library_names.split(',')
options = query.get("options", None)[0]
options = options.split(',')
return library_names, options
class RequestHandler(SimpleHTTPRequestHandler):
def do_GET(self):
print(self.path)
if self.path == "/":
self.path = "index.html"
return SimpleHTTPRequestHandler.do_GET(self)
if self.path.startswith("/initialize"):
dataset_keys = {k: set(v.keys()) for k, v in datasets.items()}
dataset_with_most_splits = max([d for d in dataset_keys.values()], key=len)
external_dataset_keys = {k: set(v.keys()) for k, v in external_datasets.items()}
external_dataset_with_most_splits = max([d for d in external_dataset_keys.values()], key=len)
warnings = []
for k, v in dataset_keys.items():
if len(v) < len(dataset_with_most_splits):
warnings.append(
f"The {k} dataset does not contain all splits. Missing: {dataset_with_most_splits - v}."
f"\nSelecting that split to show the pip install numbers will not work."
)
for k, v in external_dataset_keys.items():
if len(v) < len(external_dataset_with_most_splits):
warnings.append(
f"The {k} dataset does not contain all splits. Missing: {external_dataset_with_most_splits - v}"
f".\nSelecting that split to show the pip install numbers will not work."
)
dataset_with_most_splits = list(dataset_with_most_splits)
dataset_with_most_splits.sort()
external_dataset_with_most_splits = list(external_dataset_with_most_splits)
external_dataset_with_most_splits.sort()
return self.response({
'internal': list(dataset_with_most_splits),
'external': external_dataset_with_most_splits,
'warnings': warnings
})
if self.path.startswith("/retrievePipInstalls"):
errors = []
library_names, options = parse_name_and_options(self.path)
if '1' in options:
returned_values = {}
for library_name in library_names:
ds = None
if library_name in datasets['pip']:
ds = datasets['pip'][library_name]
elif library_name in external_datasets['pip']:
ds = external_datasets['pip'][library_name]
else:
errors.append(f"No {library_name} found in internal or external datasets.")
for i in ds:
if i['day'] in returned_values:
returned_values[i['day']]['Cumulated'] += i['num_downloads']
else:
returned_values[i['day']] = {'Cumulated': i['num_downloads']}
library_names = ['Cumulated']
else:
returned_values = {}
for library_name in library_names:
if library_name in datasets['pip']:
ds = datasets['pip'][library_name]
elif library_name in external_datasets['pip']:
ds = external_datasets['pip'][library_name]
else:
errors.append(f"No {library_name} found in internal or external datasets for pip.")
return {'errors': errors}
for i in ds:
if i['day'] in returned_values:
returned_values[i['day']][library_name] = i['num_downloads']
else:
returned_values[i['day']] = {library_name: i['num_downloads']}
for library_name in library_names:
for i in returned_values.keys():
if library_name not in returned_values[i]:
returned_values[i][library_name] = None
returned_values = collections.OrderedDict(sorted(returned_values.items()))
output = {l: [k[l] for k in returned_values.values()] for l in library_names}
output['day'] = list(returned_values.keys())
return self.response(output)
if self.path.startswith("/retrieveStars"):
errors = []
library_names, options = parse_name_and_options(self.path)
returned_values = {}
dataset_dict = datasets['stars']
external_dataset_dict = external_datasets['stars']
week_over_week = '1' in options
for library_name in library_names:
if library_name in dataset_dict:
dataset = dataset_dict[library_name]
elif library_name in external_dataset_dict:
dataset = external_dataset_dict[library_name]
else:
errors.append(f"No {library_name} found in internal or external datasets for stars.")
return {'errors': errors}
last_value = 0
last_week = dataset[0]['week']
for i in dataset:
if week_over_week and last_week == i['week']:
continue
if i['dates'] in returned_values:
returned_values[i['dates']][library_name] = i['range'] - last_value
else:
returned_values[i['dates']] = {library_name: i['range'] - last_value}
last_value = i['range'] if week_over_week else 0
last_week = i['week']
returned_values = collections.OrderedDict(sorted(returned_values.items()))
returned_values = link_values(library_names, returned_values)
output = {l: [k[l] for k in returned_values.values()][::-1] for l in library_names}
output['day'] = list(returned_values.keys())[::-1]
# Trim down to a smaller number of points.
output = {k: [v for i, v in enumerate(value) if i % max(1, int(len(value) / 100)) == 0] for k, value in output.items()}
return self.response(output)
if self.path.startswith("/retrieveIssues"):
errors = []
library_names, options = parse_name_and_options(self.path)
exclude_org_members = '1' in options
week_over_week = '2' in options
returned_values = {}
dataset_dict = datasets['issues']
external_dataset_dict = external_datasets['issues']
range_id = 'range' if not exclude_org_members else 'range_non_org'
for library_name in library_names:
if library_name in dataset_dict:
dataset = dataset_dict[library_name]
elif library_name in external_dataset_dict:
dataset = external_dataset_dict[library_name]
else:
errors.append(f"No {library_name} found in internal or external datasets for stars.")
return {'errors': errors}
last_value = 0
last_week = dataset[0]['week']
for i in dataset:
if week_over_week and last_week == i['week']:
continue
if i['dates'] in returned_values:
returned_values[i['dates']][library_name] = i[range_id] - last_value
else:
returned_values[i['dates']] = {library_name: i[range_id] - last_value}
last_value = i[range_id] if week_over_week else 0
last_week = i['week']
returned_values = collections.OrderedDict(sorted(returned_values.items()))
returned_values = link_values(library_names, returned_values)
output = {l: [k[l] for k in returned_values.values()][::-1] for l in library_names}
output['day'] = list(returned_values.keys())[::-1]
# Trim down to a smaller number of points.
output = {k: [v for i, v in enumerate(value) if i % max(1, int(len(value) / 100)) == 0] for k, value in output.items()}
return self.response(output)
return SimpleHTTPRequestHandler.do_GET(self)
def response(self, output):
self.send_response(200)
self.send_header("Content-Type", "application/json")
self.end_headers()
self.wfile.write(json.dumps(output).encode("utf-8"))
return SimpleHTTPRequestHandler
server = ThreadingHTTPServer(("", 7860), RequestHandler)
print("Running on port 7860")
server.serve_forever()