docdialogue / chatwithpdf.py
openangel's picture
Upload folder using huggingface_hub
3a92ba1
#import csv
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from dotenv import load_dotenv
import os
import requests
from io import BytesIO
import fitz
from PIL import Image
#init
load_dotenv()
# Global variables
COUNT, N = 0, 0
chat_history = []
chain = ''
pdf_file = None
pdf_url = None
enable_box = gr.Textbox.update(value=None,
placeholder='Upload your OpenAI API key', interactive=True)
disable_box = gr.Textbox.update(value='OpenAI API key is Set', interactive=False)
openai_api_key = os.getenv('OPENAI_API_KEY')
os.environ['OPENAI_API_KEY'] = openai_api_key
# Function to set the OpenAI API key
def set_apikey(api_key):
os.environ['OPENAI_API_KEY'] = api_key
return disable_box
# Function to enable the API key input box
def enable_api_box():
return enable_box
# Function to add text to the chat history
def add_text(history, text):
if not text:
raise gr.Error('Enter text')
history = history + [(text, '')]
return history
# Function to process the PDF file and create a conversation chain
def process_file(file):
if 'OPENAI_API_KEY' not in os.environ:
raise gr.Error('Upload your OpenAI API key')
# loader = PyPDFLoader(file.name)
loader = PyPDFLoader(file)
documents = loader.load()
embeddings = OpenAIEmbeddings()
pdfsearch = Chroma.from_documents(documents, embeddings)
chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3),
retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}),
return_source_documents=True)
return chain
# Function to generate a response based on the chat history and query
# def generate_response(history, query, btn):
# global COUNT, N, chat_history, chain
# if not btn:
# raise gr.Error(message='Upload a PDF')
# if COUNT == 0:
# chain = process_file(btn)
# COUNT += 1
# result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
# chat_history += [(query, result["answer"])]
# N = list(result['source_documents'][0])[1][1]['page']
# for char in result['answer']:
# history[-1][-1] += char
# yield history, ''
def generate_response(history,query,btn):
global COUNT, N, chat_history, chain, pdf_file
# if not pdf_file and btn:
# raise gr.Error(message='Add a url that ends with .pdf')
if COUNT == 0:
if not pdf_file:
chain = process_file(btn.name)
else:
chain = process_file(pdf_url)
result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True)
chat_history += [(query, result["answer"])]
N = list(result['source_documents'][0])[1][1]['page']
for char in result['answer']:
history[-1][-1] += char
yield history, ''
# Function to render a specific page of a PDF file as an image
def render_file(file):
set_gobals_to_none
global N
doc = fitz.open(file.name)
page = doc[N]
# Render the page as a PNG image with a resolution of 300 DPI
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
return image
def render_pdf_url(url):
global N, pdf_url, pdf_file
pdf_url = url
response = requests.get(url)
if response.status_code == 200:
pdf_f = BytesIO(response.content)
doc = fitz.open(stream=pdf_f, filetype="pdf")
pdf_file = doc
page = doc[N]
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
return image
# def render_pdf_url(url):
# global N, pdf_url, pdf_file
# pdf_url = url
# response = requests.get(url)
# if response.status_code == 200:
# pdf_f = BytesIO(response.content)
# doc = fitz.open(stream=pdf_f, filetype="pdf")
# pdf_file = doc
# # Check if N is within the valid range of pages
# if N < 0 or N >= len(doc):
# raise ValueError(f"Page number {N} is not within the valid range of pages (0 to {len(doc) - 1})")
# page = doc[N]
# pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
# # Use Image.frombuffer instead of Image.frombytes
# image = Image.frombuffer('RGB', [pix.width, pix.height], pix.samples, 'raw', 'RGB', 0, 1)
# return image
def rerender_pdf(url):
global N, pdf_file
page = pdf_file[N]
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72))
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
return image
def choose_render(url):
global pdf_file, pdf_url
if not pdf_file:
return render_file(url)
else:
return rerender_pdf(url)
def set_gobals_to_none():
global pdf_file, pdf_url
pdf_file,pdf_url = None
# Gradio application setup
with gr.Blocks(css= "footer {visibility: hidden}", title="DocDialogue", analytics_enabled=True) as demo:
# Create a Gradio block
gr.Markdown("Have dialogue with your pdf documents")
with gr.Column():
# with gr.Row():
# with gr.Column(scale=0.8):
# api_key = gr.Textbox(
# placeholder='Enter OpenAI API key',
# show_label=False,
# interactive=True
# ).style(container=False)
# with gr.Column(scale=0.2):
# change_api_key = gr.Button('Change Key')
with gr.Row():
with gr.Column(scale=0.8):
pdf_url = gr.Textbox(placeholder="Enter PDF url",show_label=False, interactive=True)
with gr.Column(scale=0.2):
pdf_url_btn = gr.Button(size='lg',value='Submit')
with gr.Row():
chatbot = gr.Chatbot(value=[], elem_id='chatbot', height=680 ,label="Chat")
show_img = gr.Image(label='Upload PDF', tool='select', height=680)
with gr.Row():
with gr.Column(scale=0.70):
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter",
container=False
)
with gr.Column(scale=0.15):
submit_btn = gr.Button('Submit')
with gr.Column(scale=0.15):
btn = gr.UploadButton("📁 Upload a PDF", file_types=[".pdf"])
# Set up event handlers
# Event handler for submitting the OpenAI API key
# api_key.submit(fn=set_apikey, inputs=[api_key], outputs=[api_key])
# Event handler for changing the API key
# change_api_key.click(fn=enable_api_box, outputs=[api_key])
# Event handler for uploading a PDF
btn.upload(fn=render_file, inputs=[btn], outputs=[show_img])
pdf_url_btn.click(fn=render_pdf_url, inputs=[pdf_url], outputs=[show_img])
# Event handler for submitting text and generating response
submit_btn.click(
fn=add_text,
inputs=[chatbot, txt],
outputs=[chatbot],
queue=False
).success(
fn=generate_response,
inputs=[chatbot, txt, btn],
outputs=[chatbot, txt]
).success(
fn=choose_render,
inputs=[btn],
outputs=[show_img]
)
demo.queue()
if __name__ == "__main__":
demo.launch()
# Run
# gradio chatwithpdf.py