Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from io import BytesIO | |
def convert_file(input_file, conversion_type): | |
# Check if a file was uploaded | |
if input_file is None: | |
raise ValueError("Please upload a file.") | |
file_name = input_file.name | |
file_extension = file_name.lower().split('.')[-1] | |
file_bytes = input_file.read() | |
df = None | |
output_file = None | |
converted_format = None | |
# Conversion: CSV to Parquet | |
if conversion_type == "CSV to Parquet": | |
if file_extension != "csv": | |
raise ValueError("For CSV to Parquet conversion, please upload a CSV file.") | |
df = pd.read_csv(BytesIO(file_bytes)) | |
output_file = "output.parquet" | |
df.to_parquet(output_file, index=False) | |
converted_format = "Parquet" | |
# Conversion: Parquet to CSV | |
elif conversion_type == "Parquet to CSV": | |
if file_extension != "parquet": | |
raise ValueError("For Parquet to CSV conversion, please upload a Parquet file.") | |
df = pd.read_parquet(BytesIO(file_bytes)) | |
output_file = "output.csv" | |
df.to_csv(output_file, index=False) | |
converted_format = "CSV" | |
else: | |
raise ValueError("Invalid conversion type selected.") | |
# Generate a preview of the top 10 rows | |
preview = df.head(10).to_string(index=False) | |
info_message = ( | |
f"Input file: {file_name}\n" | |
f"Converted file format: {converted_format}\n\n" | |
f"Preview (Top 10 Rows):\n{preview}" | |
) | |
return output_file, info_message | |
demo = gr.Interface( | |
fn=convert_file, | |
inputs=[ | |
gr.File(label="Upload CSV or Parquet File"), | |
gr.Radio(choices=["CSV to Parquet", "Parquet to CSV"], label="Conversion Type") | |
], | |
outputs=[ | |
gr.File(label="Converted File"), | |
gr.Textbox(label="Preview (Top 10 Rows)", lines=15) | |
], | |
title="CSV <-> Parquet Converter", | |
description=( | |
"Upload a CSV or Parquet file and select the conversion type. " | |
"The app converts the file to the opposite format and displays a preview of the top 10 rows." | |
) | |
) | |
if __name__ == "__main__": | |
demo.launch() | |