everychat / app.py
openfree's picture
Update app.py
a352e50 verified
raw
history blame
11.1 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import pandas as pd
import pdfplumber
from typing import List, Tuple
# LLM Models Definition
LLM_MODELS = {
"Cohere c4ai-crp-08-2024": "CohereForAI/c4ai-command-r-plus-08-2024", # Default
"Meta Llama3.3-70B": "meta-llama/Llama-3.3-70B-Instruct",
"Mistral Nemo 2407": "mistralai/Mistral-Nemo-Instruct-2407",
"Alibaba Qwen QwQ-32B": "Qwen/QwQ-32B-Preview"
}
def get_client(model_name):
return InferenceClient(LLM_MODELS[model_name], token=os.getenv("HF_TOKEN"))
def analyze_file_content(content, file_type):
"""Analyze file content and return structural summary"""
if file_type in ['parquet', 'csv', 'pdf']:
try:
if file_type == 'pdf':
with pdfplumber.open(content) as pdf:
pages = pdf.pages
lines = []
for page in pages:
lines.extend(page.extract_text().split('\n'))
else:
lines = content.split('\n')
header = lines[0]
columns = len(header.split('|')) - 1
rows = len(lines) - 3
return f"πŸ“Š Dataset Structure: {columns} columns, {rows} data samples"
except:
return "❌ Dataset structure analysis failed"
lines = content.split('\n')
total_lines = len(lines)
non_empty_lines = len([line for line in lines if line.strip()])
if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']):
functions = len([line for line in lines if 'def ' in line])
classes = len([line for line in lines if 'class ' in line])
imports = len([line for line in lines if 'import ' in line or 'from ' in line])
return f"πŸ’» Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})"
paragraphs = content.count('\n\n') + 1
words = len(content.split())
return f"πŸ“ Document Structure: {total_lines} lines, {paragraphs} paragraphs, ~{words} words"
def read_uploaded_file(file):
if file is None:
return "", ""
try:
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext in ['.parquet', '.pdf']:
if file_ext == '.parquet':
df = pd.read_parquet(file.name, engine='pyarrow')
else:
df = pd.read_csv(file.name, encoding='utf-8', engine='python') # Use 'python' engine to handle PDF files
content = df.head(10).to_markdown(index=False)
return content, file_ext
elif file_ext == '.csv':
df = pd.read_csv(file.name)
content = f"πŸ“Š Data Preview:\n{df.head(10).to_markdown(index=False)}\n\n"
content += f"\nπŸ“ˆ Data Information:\n"
content += f"- Total Rows: {len(df)}\n"
content += f"- Total Columns: {len(df.columns)}\n"
content += f"- Column List: {', '.join(df.columns)}\n"
content += f"\nπŸ“‹ Column Data Types:\n"
for col, dtype in df.dtypes.items():
content += f"- {col}: {dtype}\n"
null_counts = df.isnull().sum()
if null_counts.any():
content += f"\n⚠️ Missing Values:\n"
for col, null_count in null_counts[null_counts > 0].items():
content += f"- {col}: {null_count} missing\n"
return content, file_ext
else:
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1']
for encoding in encodings:
try:
with open(file.name, 'r', encoding=encoding) as f:
content = f.read()
return content, file_ext
except UnicodeDecodeError:
continue
raise UnicodeDecodeError(f"❌ Unable to read file with supported encodings ({', '.join(encodings)})")
except Exception as e:
return f"❌ Error reading file: {str(e)}", "error"
def format_history(history):
formatted_history = []
for user_msg, assistant_msg in history:
formatted_history.append({"role": "user", "content": user_msg})
if assistant_msg:
formatted_history.append({"role": "assistant", "content": assistant_msg})
return formatted_history
def chat(message, history, uploaded_file, model_name, system_message="", max_tokens=4000, temperature=0.7, top_p=0.9):
system_prefix = """You are a file analysis expert. Analyze the uploaded file in depth from the following perspectives:
1. πŸ“‹ Overall structure and composition
2. πŸ“Š Key content and pattern analysis
3. πŸ“ˆ Data characteristics and meaning
- For datasets: Column meanings, data types, value distributions
- For text/code: Structural features, main patterns
4. πŸ’‘ Potential applications
5. ✨ Data quality and areas for improvement
Provide detailed and structured analysis from an expert perspective, but explain in an easy-to-understand way. Format the analysis results in Markdown and include specific examples where possible."""
if uploaded_file:
content, file_type = read_uploaded_file(uploaded_file)
if file_type == "error":
return "", [{"role": "user", "content": message}, {"role": "assistant", "content": content}]
file_summary = analyze_file_content(content, file_type)
if file_type in ['parquet', 'csv', 'pdf']:
system_message += f"\n\nFile Content:\n```markdown\n{content}\n```"
else:
system_message += f"\n\nFile Content:\n```\n{content}\n```"
if message == "Starting file analysis...":
message = f"""[ꡬ쑰 뢄석] {file_summary}
μžμ„Ένžˆ λΆ„μ„ν•΄μ£Όμ„Έμš”:
1. πŸ“‹ 전체 ꡬ쑰 및 ν˜•μ‹
2. πŸ“Š μ£Όμš” λ‚΄μš© 및 κ΅¬μ„±μš”μ†Œ 뢄석
3. πŸ“ˆ 데이터/λ‚΄μš©μ˜ νŠΉμ„± 및 νŒ¨ν„΄
4. ⭐ ν’ˆμ§ˆ 및 μ™„μ „μ„± 평가
5. πŸ’‘ μ œμ•ˆν•˜λŠ” κ°œμ„ μ 
6. 🎯 μ‹€μš©μ μΈ ν™œμš© 및 ꢌμž₯사항"""
messages = [{"role": "system", "content": f"{system_prefix} {system_message}"}]
# Convert history to message format
if history is not None:
for item in history:
if isinstance(item, dict):
messages.append(item)
elif isinstance(item, (list, tuple)) and len(item) == 2:
messages.append({"role": "user", "content": item[0]})
if item[1]:
messages.append({"role": "assistant", "content": item[1]})
messages.append({"role": "user", "content": message})
try:
client = get_client(model_name)
partial_message = ""
current_history = []
for msg in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = msg.choices[0].delta.get('content', None)
if token:
partial_message += token
current_history = [
{"role": "user", "content": message},
{"role": "assistant", "content": partial_message}
]
yield "", current_history
except Exception as e:
error_msg = f"❌ Inference error: {str(e)}"
error_history = [
{"role": "user", "content": message},
{"role": "assistant", "content": error_msg}
]
yield "", error_history
css = """
footer {visibility: hidden}
"""
# ... (이전 μ½”λ“œ 동일)
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, title="EveryChat πŸ€–") as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
<h1 style="font-size: 3em; font-weight: 600; margin: 0.5em;">EveryChat πŸ€–</h1>
<h3 style="font-size: 1.2em; margin: 1em;">Your Intelligent File Analysis Assistant πŸ“Š</h3>
</div>
"""
)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
height=600,
label="μ±„νŒ… μΈν„°νŽ˜μ΄μŠ€ πŸ’¬",
type="messages"
)
msg = gr.Textbox(
label="λ©”μ‹œμ§€λ₯Ό μž…λ ₯ν•˜μ„Έμš”",
show_label=False,
placeholder="μ—…λ‘œλ“œλœ νŒŒμΌμ— λŒ€ν•΄ λ¬Όμ–΄λ³΄μ„Έμš”... πŸ’­",
container=False
)
send = gr.Button("전솑 πŸ“€")
with gr.Column(scale=1):
model_name = gr.Radio(
choices=list(LLM_MODELS.keys()),
value="Cohere c4ai-crp-08-2024",
label="LLM λͺ¨λΈ 선택 πŸ€–",
info="μ„ ν˜Έν•˜λŠ” AI λͺ¨λΈμ„ μ„ νƒν•˜μ„Έμš”"
)
gr.Markdown("### 파일 μ—…λ‘œλ“œ πŸ“\n지원: ν…μŠ€νŠΈ, μ½”λ“œ, CSV, Parquet, PDF 파일")
file_upload = gr.File(
label="파일 μ—…λ‘œλ“œ",
file_types=["text", ".csv", ".parquet", ".pdf"],
type="filepath"
)
with gr.Accordion("κ³ κΈ‰ μ„€μ • βš™οΈ", open=False):
system_message = gr.Textbox(label="μ‹œμŠ€ν…œ λ©”μ‹œμ§€ πŸ“", value="")
max_tokens = gr.Slider(minimum=1, maximum=8000, value=4000, label="μ΅œλŒ€ 토큰 πŸ“Š")
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="μ˜¨λ„ 🌑️")
top_p = gr.Slider(minimum=0, maximum=1, value=0.9, label="Top P πŸ“ˆ")
# Event bindings
msg.submit(
chat,
inputs=[msg, chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot],
queue=True
).then(
lambda: gr.update(interactive=True),
None,
[msg]
)
send.click(
chat,
inputs=[msg, chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot],
queue=True
).then(
lambda: gr.update(interactive=True),
None,
[msg]
)
# Auto-analysis on file upload
file_upload.change(
chat,
inputs=[gr.Textbox(value="파일 뢄석 μ‹œμž‘..."), chatbot, file_upload, model_name, system_message, max_tokens, temperature, top_p],
outputs=[msg, chatbot],
queue=True
)
# Example queries
gr.Examples(
examples=[
["파일의 전체 ꡬ쑰와 νŠΉμ§•μ„ μžμ„Ένžˆ μ„€λͺ…ν•΄μ£Όμ„Έμš” πŸ“‹"],
["파일의 μ£Όμš” νŒ¨ν„΄κ³Ό νŠΉμ„±μ„ λΆ„μ„ν•΄μ£Όμ„Έμš” πŸ“Š"],
["파일의 ν’ˆμ§ˆκ³Ό κ°œμ„ μ μ„ ν‰κ°€ν•΄μ£Όμ„Έμš” πŸ’‘"],
["이 νŒŒμΌμ„ μ–΄λ–»κ²Œ μ‹€μš©μ μœΌλ‘œ ν™œμš©ν•  수 μžˆμ„κΉŒμš”? 🎯"],
["μ£Όμš” λ‚΄μš©μ„ μš”μ•½ν•˜κ³  핡심 톡찰λ ₯을 λ„μΆœν•΄μ£Όμ„Έμš” ✨"],
["더 μžμ„Έν•œ 뢄석을 κ³„μ†ν•΄μ£Όμ„Έμš” πŸ“ˆ"],
],
inputs=msg,
)
if __name__ == "__main__":
demo.launch()