Update app.py
Browse files
app.py
CHANGED
@@ -416,13 +416,12 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
416 |
if randomize_seed:
|
417 |
seed = random.randint(0, MAX_SEED)
|
418 |
|
|
|
419 |
# Generate image
|
420 |
if image_input is not None:
|
421 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
422 |
-
return final_image, seed, gr.update(visible=False)
|
423 |
else:
|
424 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
425 |
-
# Consume the generator to get the final image
|
426 |
final_image = None
|
427 |
step_counter = 0
|
428 |
for image in image_generator:
|
@@ -431,13 +430,17 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
|
|
431 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
432 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
433 |
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
|
|
|
|
|
|
|
|
438 |
except Exception as e:
|
439 |
print(f"Error in run_lora: {str(e)}")
|
440 |
-
return
|
441 |
|
442 |
run_lora.zerogpu = True
|
443 |
|
@@ -563,8 +566,8 @@ def infer_upscale(
|
|
563 |
):
|
564 |
try:
|
565 |
if input_image is None:
|
566 |
-
|
567 |
-
|
568 |
if randomize_seed:
|
569 |
seed = random.randint(0, MAX_SEED)
|
570 |
|
@@ -603,7 +606,7 @@ def infer_upscale(
|
|
603 |
return image, seed
|
604 |
except Exception as e:
|
605 |
print(f"Error in infer_upscale: {str(e)}")
|
606 |
-
return
|
607 |
|
608 |
def check_upscale_input(input_image, *args):
|
609 |
if input_image is None:
|
@@ -755,29 +758,31 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css, delete_cache=(60, 3600)) as a
|
|
755 |
inputs=[selected_indices, loras_state],
|
756 |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
757 |
)
|
758 |
-
|
759 |
gr.on(
|
760 |
triggers=[generate_button.click, prompt.submit],
|
761 |
fn=run_lora,
|
762 |
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
|
763 |
outputs=[result, seed, progress_bar]
|
764 |
).then(
|
765 |
-
fn=lambda x, history: update_history(x, history) if x
|
766 |
inputs=[result, history_gallery],
|
767 |
outputs=history_gallery,
|
768 |
)
|
769 |
-
|
770 |
-
# 업스케일 버튼 이벤트 추가 (이 부분을 gr.Blocks 컨텍스트 내부로 이동)
|
771 |
upscale_button.click(
|
772 |
-
|
773 |
inputs=[
|
774 |
-
upscale_input,
|
775 |
upscale_seed,
|
776 |
upscale_randomize_seed,
|
|
|
777 |
upscale_steps,
|
778 |
upscale_factor,
|
779 |
controlnet_conditioning_scale,
|
780 |
],
|
|
|
|
|
|
|
781 |
outputs=[
|
782 |
upscale_input,
|
783 |
upscale_seed,
|
|
|
416 |
if randomize_seed:
|
417 |
seed = random.randint(0, MAX_SEED)
|
418 |
|
419 |
+
|
420 |
# Generate image
|
421 |
if image_input is not None:
|
422 |
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
|
|
423 |
else:
|
424 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
|
|
425 |
final_image = None
|
426 |
step_counter = 0
|
427 |
for image in image_generator:
|
|
|
430 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
431 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
432 |
|
433 |
+
if final_image is None:
|
434 |
+
raise gr.Error("Failed to generate image")
|
435 |
+
|
436 |
+
return final_image, seed, gr.update(visible=False)
|
437 |
+
except spaces.zero.gradio.HTMLError as e:
|
438 |
+
if "You have exceeded your Pro GPU quota" in str(e):
|
439 |
+
return gr.Error("GPU quota exceeded. Please try again later."), seed, gr.update(visible=False)
|
440 |
+
raise
|
441 |
except Exception as e:
|
442 |
print(f"Error in run_lora: {str(e)}")
|
443 |
+
return gr.Error(f"An error occurred: {str(e)}"), seed, gr.update(visible=False)
|
444 |
|
445 |
run_lora.zerogpu = True
|
446 |
|
|
|
566 |
):
|
567 |
try:
|
568 |
if input_image is None:
|
569 |
+
return gr.Error("No input image provided"), seed
|
570 |
+
|
571 |
if randomize_seed:
|
572 |
seed = random.randint(0, MAX_SEED)
|
573 |
|
|
|
606 |
return image, seed
|
607 |
except Exception as e:
|
608 |
print(f"Error in infer_upscale: {str(e)}")
|
609 |
+
return gr.Error(f"Upscaling failed: {str(e)}"), seed
|
610 |
|
611 |
def check_upscale_input(input_image, *args):
|
612 |
if input_image is None:
|
|
|
758 |
inputs=[selected_indices, loras_state],
|
759 |
outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2]
|
760 |
)
|
761 |
+
|
762 |
gr.on(
|
763 |
triggers=[generate_button.click, prompt.submit],
|
764 |
fn=run_lora,
|
765 |
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
|
766 |
outputs=[result, seed, progress_bar]
|
767 |
).then(
|
768 |
+
fn=lambda x, history: update_history(x, history) if not isinstance(x, gr.Error) else history,
|
769 |
inputs=[result, history_gallery],
|
770 |
outputs=history_gallery,
|
771 |
)
|
772 |
+
|
|
|
773 |
upscale_button.click(
|
774 |
+
infer_upscale,
|
775 |
inputs=[
|
|
|
776 |
upscale_seed,
|
777 |
upscale_randomize_seed,
|
778 |
+
upscale_input,
|
779 |
upscale_steps,
|
780 |
upscale_factor,
|
781 |
controlnet_conditioning_scale,
|
782 |
],
|
783 |
+
outputs=[upscale_result, upscale_seed_output],
|
784 |
+
)
|
785 |
+
|
786 |
outputs=[
|
787 |
upscale_input,
|
788 |
upscale_seed,
|