Update app.py
Browse files
app.py
CHANGED
@@ -43,12 +43,11 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
43 |
|
44 |
# 공통 FLUX 모델 로드
|
45 |
base_model = "black-forest-labs/FLUX.1-dev"
|
46 |
-
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype
|
47 |
-
pipe.to(device)
|
48 |
|
49 |
# LoRA를 위한 설정
|
50 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype
|
51 |
-
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype
|
52 |
|
53 |
# Image-to-Image 파이프라인 설정
|
54 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
@@ -59,14 +58,13 @@ pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
59 |
tokenizer=pipe.tokenizer,
|
60 |
text_encoder_2=pipe.text_encoder_2,
|
61 |
tokenizer_2=pipe.tokenizer_2,
|
62 |
-
torch_dtype=dtype
|
63 |
-
|
64 |
-
)
|
65 |
|
66 |
# Upscale을 위한 ControlNet 설정
|
67 |
controlnet = FluxControlNetModel.from_pretrained(
|
68 |
-
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
69 |
-
)
|
70 |
|
71 |
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
72 |
pipe_upscale = FluxControlNetPipeline(
|
@@ -78,7 +76,7 @@ pipe_upscale = FluxControlNetPipeline(
|
|
78 |
transformer=pipe.transformer,
|
79 |
scheduler=pipe.scheduler,
|
80 |
controlnet=controlnet
|
81 |
-
)
|
82 |
|
83 |
MAX_SEED = 2**32 - 1
|
84 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
@@ -587,7 +585,7 @@ def infer_upscale(
|
|
587 |
|
588 |
image = pipe_upscale(
|
589 |
prompt="",
|
590 |
-
|
591 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
592 |
num_inference_steps=num_inference_steps,
|
593 |
guidance_scale=3.5,
|
@@ -605,7 +603,7 @@ def infer_upscale(
|
|
605 |
return image, seed
|
606 |
except Exception as e:
|
607 |
print(f"Error in infer_upscale: {str(e)}")
|
608 |
-
return
|
609 |
|
610 |
def check_upscale_input(input_image, *args):
|
611 |
if input_image is None:
|
|
|
43 |
|
44 |
# 공통 FLUX 모델 로드
|
45 |
base_model = "black-forest-labs/FLUX.1-dev"
|
46 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to(device)
|
|
|
47 |
|
48 |
# LoRA를 위한 설정
|
49 |
+
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
50 |
+
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
|
51 |
|
52 |
# Image-to-Image 파이프라인 설정
|
53 |
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
|
|
|
58 |
tokenizer=pipe.tokenizer,
|
59 |
text_encoder_2=pipe.text_encoder_2,
|
60 |
tokenizer_2=pipe.tokenizer_2,
|
61 |
+
torch_dtype=dtype
|
62 |
+
).to(device)
|
|
|
63 |
|
64 |
# Upscale을 위한 ControlNet 설정
|
65 |
controlnet = FluxControlNetModel.from_pretrained(
|
66 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
67 |
+
).to(device)
|
68 |
|
69 |
# Upscale 파이프라인 설정 (기존 pipe 재사용)
|
70 |
pipe_upscale = FluxControlNetPipeline(
|
|
|
76 |
transformer=pipe.transformer,
|
77 |
scheduler=pipe.scheduler,
|
78 |
controlnet=controlnet
|
79 |
+
).to(device)
|
80 |
|
81 |
MAX_SEED = 2**32 - 1
|
82 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
|
|
585 |
|
586 |
image = pipe_upscale(
|
587 |
prompt="",
|
588 |
+
control_image=control_image,
|
589 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
590 |
num_inference_steps=num_inference_steps,
|
591 |
guidance_scale=3.5,
|
|
|
603 |
return image, seed
|
604 |
except Exception as e:
|
605 |
print(f"Error in infer_upscale: {str(e)}")
|
606 |
+
return None, seed
|
607 |
|
608 |
def check_upscale_input(input_image, *args):
|
609 |
if input_image is None:
|