Spaces:
Runtime error
Runtime error
File size: 25,067 Bytes
5decbb5 34a5b9d b294e45 a9043b3 849a2fb a294a85 327a449 a9043b3 a650e86 5decbb5 327a449 5decbb5 327a449 849a2fb 327a449 395ee78 5decbb5 0d76136 849a2fb f532dce 5decbb5 a441cea 217860d 1dbf257 50b7dc1 5decbb5 327a449 5decbb5 327a449 5decbb5 07d0ab0 5decbb5 07d0ab0 48fc3d0 a329b11 6477254 0af49b7 6477254 0af49b7 204ae87 327a449 48fc3d0 5decbb5 327a449 5decbb5 fcca0da a650e86 327a449 5decbb5 a329b11 3d6f220 a329b11 5decbb5 172c740 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 bfef560 0b00f1f 327a449 1677fe8 5decbb5 09e5977 5decbb5 07d0ab0 5decbb5 19ab1ac a441cea 217860d 5decbb5 a9043b3 5decbb5 246eb4a 19ab1ac a9043b3 246eb4a 19ab1ac 246eb4a 071e81f 19ab1ac 246eb4a 19ab1ac 246eb4a 0c5a016 5decbb5 19ab1ac 86a34dd 628b2cd 3cfa62d 628b2cd 3cfa62d 86a34dd 628b2cd 09e5977 8049e0c 07d0ab0 628b2cd b512e1d c9eca3c b512e1d c9eca3c b512e1d c9eca3c b512e1d c9eca3c b512e1d c9eca3c b512e1d c9eca3c b512e1d c9eca3c b512e1d 32ceba2 b512e1d 32ceba2 b512e1d 32ceba2 b512e1d 32ceba2 b512e1d 32ceba2 b512e1d 32ceba2 b512e1d 32ceba2 b512e1d 32ceba2 b512e1d 32ceba2 b512e1d 32ceba2 b512e1d 8528922 b512e1d 32ceba2 327a449 32ceba2 86a34dd b512e1d 09e5977 b512e1d 09e5977 b512e1d 09e5977 b512e1d a9043b3 aada850 ba6647e b512e1d aada850 68103c0 b512e1d 5decbb5 07d0ab0 5decbb5 327a449 408a092 5d7fe02 408a092 5decbb5 327a449 5decbb5 327a449 5decbb5 327a449 5decbb5 07d0ab0 327a449 a650e86 327a449 5decbb5 2bd1ca8 3cfa62d 5decbb5 9834a82 5decbb5 0be56af 327a449 5decbb5 fcca0da 3cfa62d fcca0da 15404f1 a329b11 3d6f220 a329b11 15404f1 3cfa62d a194156 5decbb5 a194156 86a34dd a194156 5decbb5 c250843 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
import os
import subprocess
from typing import Union
from huggingface_hub import whoami, HfApi
from fastapi import FastAPI
from starlette.middleware.sessions import SessionMiddleware
import sys
# ai-toolkit์ด ์์ผ๋ฉด ์ค์น
if not os.path.exists("ai-toolkit"):
subprocess.run("git clone https://github.com/ostris/ai-toolkit.git", shell=True)
subprocess.run("cd ai-toolkit && git submodule update --init --recursive", shell=True)
# ai-toolkit ๊ฒฝ๋ก ์ถ๊ฐ
toolkit_path = os.path.join(os.getcwd(), "ai-toolkit")
sys.path.append(toolkit_path)
# ํ์ํ ํจํค์ง ์ค์น
subprocess.run("pip install -r ai-toolkit/requirements.txt", shell=True)
is_spaces = True if os.environ.get("SPACE_ID") else False
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import sys
from dotenv import load_dotenv
load_dotenv()
# Add the current working directory to the Python path
sys.path.insert(0, os.getcwd())
import gradio as gr
from PIL import Image
import torch
import uuid
import shutil
import json
import yaml
from slugify import slugify
from transformers import AutoProcessor, AutoModelForCausalLM
# Gradio app ์ค์
app = FastAPI()
app.add_middleware(SessionMiddleware, secret_key="your-secret-key")
if not is_spaces:
sys.path.insert(0, "ai-toolkit")
from toolkit.job import get_job
gr.OAuthProfile = None
gr.OAuthToken = None
MAX_IMAGES = 150
# Hugging Face ํ ํฐ ์ค์
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set")
if is_spaces:
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import spaces
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["HUGGING_FACE_HUB_TOKEN"] = HF_TOKEN
# HF API ์ด๊ธฐํ
api = HfApi(token=HF_TOKEN)
def load_captioning(uploaded_files, concept_sentence):
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
updates = []
if len(uploaded_images) <= 1:
raise gr.Error(
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
)
elif len(uploaded_images) > MAX_IMAGES:
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
# Update for the captioning_area
# for _ in range(3):
updates.append(gr.update(visible=True))
# Update visibility and image for each captioning row and image
for i in range(1, MAX_IMAGES + 1):
# Determine if the current row and image should be visible
visible = i <= len(uploaded_images)
# Update visibility of the captioning row
updates.append(gr.update(visible=visible))
# Update for image component - display image if available, otherwise hide
image_value = uploaded_images[i - 1] if visible else None
updates.append(gr.update(value=image_value, visible=visible))
corresponding_caption = False
if(image_value):
base_name = os.path.splitext(os.path.basename(image_value))[0]
print(base_name)
print(image_value)
if base_name in txt_files_dict:
print("entrou")
with open(txt_files_dict[base_name], 'r') as file:
corresponding_caption = file.read()
# Update value of captioning area
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
updates.append(gr.update(value=text_value, visible=visible))
# Update for the sample caption area
updates.append(gr.update(visible=True))
# Update prompt samples
updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall"))
return updates
def hide_captioning():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def create_dataset(*inputs):
print("Creating dataset")
images = inputs[0]
destination_folder = str(f"datasets/{uuid.uuid4()}")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
with open(jsonl_file_path, "a") as jsonl_file:
for index, image in enumerate(images):
new_image_path = shutil.copy(image, destination_folder)
original_caption = inputs[index + 1]
file_name = os.path.basename(new_image_path)
data = {"file_name": file_name, "prompt": original_caption}
jsonl_file.write(json.dumps(data) + "\n")
return destination_folder
def run_captioning(images, concept_sentence, *captions):
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True
).to(device)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
captions = list(captions)
for i, image_path in enumerate(images):
print(captions[i])
if isinstance(image_path, str): # If image is a file path
image = Image.open(image_path).convert("RGB")
prompt = "<DETAILED_CAPTION>"
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
if concept_sentence:
caption_text = f"{caption_text} [trigger]"
captions[i] = caption_text
yield captions
model.to("cpu")
del model
del processor
if is_spaces:
run_captioning = spaces.GPU()(run_captioning)
def recursive_update(d, u):
for k, v in u.items():
if isinstance(v, dict) and v:
d[k] = recursive_update(d.get(k, {}), v)
else:
d[k] = v
return d
def start_training(
lora_name,
concept_sentence,
which_model,
steps,
lr,
rank,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options,
):
if not lora_name:
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
try:
username = whoami()["name"]
except:
raise gr.Error("Failed to get username. Please check your HF_TOKEN.")
print("Started training")
slugged_lora_name = slugify(lora_name)
# Load the default config
with open("train_lora_flux_24gb.yaml", "r") as f:
config = yaml.safe_load(f)
# dev ๋ชจ๋ธ ์ค์
config["config"]["name"] = slugged_lora_name
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-dev"
config["config"]["process"][0]["model"]["assistant_lora_path"] = None # adapter ์์ด ์ค์
config["config"]["process"][0]["model"]["low_vram"] = False
config["config"]["process"][0]["train"]["skip_first_sample"] = True
config["config"]["process"][0]["train"]["steps"] = int(steps)
config["config"]["process"][0]["train"]["lr"] = float(lr)
config["config"]["process"][0]["network"]["linear"] = int(rank)
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
config["config"]["process"][0]["save"]["push_to_hub"] = True
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
config["config"]["process"][0]["save"]["hf_private"] = True
config["config"]["process"][0]["save"]["hf_token"] = HF_TOKEN
config["config"]["process"][0]["sample"]["sample_steps"] = 28
if concept_sentence:
config["config"]["process"][0]["trigger_word"] = concept_sentence
if sample_1 or sample_2 or sample_3:
config["config"]["process"][0]["train"]["disable_sampling"] = False
config["config"]["process"][0]["sample"]["sample_every"] = steps
config["config"]["process"][0]["sample"]["prompts"] = []
if sample_1:
config["config"]["process"][0]["sample"]["prompts"].append(sample_1)
if sample_2:
config["config"]["process"][0]["sample"]["prompts"].append(sample_2)
if sample_3:
config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
else:
config["config"]["process"][0]["train"]["disable_sampling"] = True
if(use_more_advanced_options):
more_advanced_options_dict = yaml.safe_load(more_advanced_options)
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
print(config)
try:
# Save the updated config
random_config_name = str(uuid.uuid4())
os.makedirs("tmp", exist_ok=True)
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
with open(config_path, "w") as f:
yaml.dump(config, f)
# ์ง์ ๋ก์ปฌ GPU์์ ํ์ต ์คํ
from toolkit.job import get_job
job = get_job(config_path)
job.run()
job.cleanup()
except Exception as e:
raise gr.Error(f"Training failed: {str(e)}")
return f"""# Training completed successfully!
## Your model is available at: <a href='https://huggingface.co/{username}/{slugged_lora_name}'>{username}/{slugged_lora_name}</a>"""
def update_pricing(steps):
try:
seconds_per_iteration = 7.54
total_seconds = (steps * seconds_per_iteration) + 240
cost_per_second = 0.80/60/60
cost = round(cost_per_second * total_seconds, 2)
cost_preview = f'''To train this LoRA, a paid L4 GPU will be hooked under the hood during training and then removed once finished.
### Estimated to cost <b>< US$ {str(cost)}</b> for {round(int(total_seconds)/60, 2)} minutes with your current train settings <small>({int(steps)} iterations at {seconds_per_iteration}s/it)</small>'''
return gr.update(visible=True), cost_preview, gr.update(visible=False), gr.update(visible=True)
except:
return gr.update(visible=False), "", gr.update(visible=False), gr.update(visible=True)
def swap_base_model(model):
return gr.update(visible=True) if model == "[dev] (high quality model, non-commercial license)" else gr.update(visible=False)
config_yaml = '''
device: cuda:0
model:
is_flux: true
quantize: true
network:
linear: 16 #it will overcome the 'rank' parameter
linear_alpha: 16 #you can have an alpha different than the ranking if you'd like
type: lora
sample:
guidance_scale: 3.5
height: 1024
neg: '' #doesn't work for FLUX
sample_every: 1000
sample_steps: 28
sampler: flowmatch
seed: 42
walk_seed: true
width: 1024
save:
dtype: float16
hf_private: true
max_step_saves_to_keep: 4
push_to_hub: true
save_every: 10000
train:
batch_size: 1
dtype: bf16
ema_config:
ema_decay: 0.99
use_ema: true
gradient_accumulation_steps: 1
gradient_checkpointing: true
noise_scheduler: flowmatch
optimizer: adamw8bit #options: prodigy, dadaptation, adamw, adamw8bit, lion, lion8bit
train_text_encoder: false #probably doesn't work for flux
train_unet: true
'''
custom_theme = gr.themes.Base(
primary_hue="indigo",
secondary_hue="slate",
neutral_hue="slate",
).set(
# ๊ธฐ๋ณธ ๋ฐฐ๊ฒฝ ๋ฐ ๋ณด๋
background_fill_primary="#1a1a1a",
background_fill_secondary="#2d2d2d",
border_color_primary="#404040",
# ๋ฒํผ ์คํ์ผ
button_primary_background_fill="#4F46E5",
button_primary_background_fill_dark="#4338CA",
button_primary_background_fill_hover="#6366F1",
button_primary_border_color="#4F46E5",
button_primary_border_color_dark="#4338CA",
button_primary_text_color="white",
button_primary_text_color_dark="white",
button_secondary_background_fill="#374151",
button_secondary_background_fill_dark="#1F2937",
button_secondary_background_fill_hover="#4B5563",
button_secondary_text_color="white",
button_secondary_text_color_dark="white",
# ๋ธ๋ก ์คํ์ผ
block_background_fill="#2d2d2d",
block_background_fill_dark="#1F2937",
block_label_background_fill="#4F46E5",
block_label_background_fill_dark="#4338CA",
block_label_text_color="white",
block_label_text_color_dark="white",
block_title_text_color="white",
block_title_text_color_dark="white",
# ์
๋ ฅ ํ๋ ์คํ์ผ
input_background_fill="#374151",
input_background_fill_dark="#1F2937",
input_border_color="#4B5563",
input_border_color_dark="#374151",
input_placeholder_color="#9CA3AF",
input_placeholder_color_dark="#6B7280",
# ๊ทธ๋ฆผ์ ํจ๊ณผ
shadow_spread="8px",
shadow_inset="0px 2px 4px 0px rgba(0,0,0,0.1)",
# ์ปจํ
์ด๋ ์คํ์ผ
panel_background_fill="#2d2d2d",
panel_background_fill_dark="#1F2937",
# ๋ณด๋ ์คํ์ผ
border_color_accent="#4F46E5",
border_color_accent_dark="#4338CA"
)
css='''
/* ๊ธฐ๋ณธ ์คํ์ผ */
h1 {
font-size: 3em;
text-align: center;
margin-bottom: 0.5em;
color: white !important;
}
h3 {
margin-top: 0;
font-size: 1.2em;
color: white !important;
}
/* Markdown ํ
์คํธ ์คํ์ผ */
.markdown {
color: white !important;
}
.markdown h1,
.markdown h2,
.markdown h3,
.markdown h4,
.markdown h5,
.markdown h6,
.markdown p {
color: white !important;
}
/* ์ปดํฌ๋ํธ ์คํ์ผ */
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
/* ์
๋ ฅ ํ๋ ์คํ์ผ */
.input-group {
background: var(--block-background-fill);
padding: 15px;
border-radius: 12px;
margin-bottom: 20px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
/* ๋ชจ๋ ์
๋ ฅ ํ๋ ํ
์คํธ ์์ */
input, textarea, .gradio-textbox input, .gradio-textbox textarea, .gradio-number input {
color: white !important;
}
/* ๋ผ๋ฒจ ํ
์คํธ ์คํ์ผ */
label, .label-text {
color: white !important;
}
/* ๋ผ๋์ค ๋ฒํผ ํ
์คํธ */
.gradio-radio label span {
color: white !important;
}
/* ์ฒดํฌ๋ฐ์ค ํ
์คํธ */
.gradio-checkbox label span {
color: white !important;
}
/* ๋ฒํผ ์คํ์ผ */
.button {
height: 40px;
border-radius: 8px;
transition: all 0.3s ease;
color: white !important;
}
.button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
/* ์ด๋ฏธ์ง ์
๋ก๋ ์์ญ */
.image-upload-area {
border: 2px dashed var(--input-border-color);
border-radius: 12px;
padding: 20px;
text-align: center;
margin-bottom: 20px;
color: white !important;
}
/* ์บก์
์์ญ */
.caption-area {
background: var(--block-background-fill);
padding: 15px;
border-radius: 12px;
margin-top: 20px;
color: white !important;
}
.caption-row {
display: flex;
align-items: center;
margin-bottom: 10px;
gap: 10px;
}
/* ๊ณ ๊ธ ์ต์
์์ญ */
.advanced-options {
background: var(--block-background-fill);
padding: 15px;
border-radius: 12px;
margin-top: 20px;
color: white !important;
}
/* ์งํ ์ํ ํ์ */
.progress-area {
background: var(--block-background-fill);
padding: 15px;
border-radius: 12px;
margin-top: 20px;
text-align: center;
color: white !important;
}
/* ํ๋ ์ด์คํ๋ ํ
์คํธ */
::placeholder {
color: rgba(255, 255, 255, 0.5) !important;
}
/* ์ฝ๋ ์๋ํฐ ํ
์คํธ */
.gradio-code {
color: white !important;
}
/* ์์ฝ๋์ธ ํ
์คํธ */
.gradio-accordion .label-wrap {
color: white !important;
}
/* ๋ฐ์ํ ๋์์ธ */
@media (max-width: 768px) {
.caption-row {
flex-direction: column;
}
}
/* ์คํฌ๋กค๋ฐ ์คํ์ผ */
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-track {
background: var(--background-fill-primary);
border-radius: 4px;
}
::-webkit-scrollbar-thumb {
background: var(--primary-500);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: var(--primary-600);
}
/* ๋ชจ๋ ํ
์คํธ ์
๋ ฅ ์์ */
.gradio-container input[type="text"],
.gradio-container textarea,
.gradio-container .input-text,
.gradio-container .input-textarea {
color: white !important;
}
/* ๋๋กญ๋ค์ด ํ
์คํธ */
select, option {
color: white !important;
}
/* ๋ฒํผ ํ
์คํธ */
button {
color: white !important;
}
'''
# Gradio ์ฑ ์์
with gr.Blocks(theme=custom_theme, css=css) as demo:
gr.Markdown(
"""# ๐ Gini LoRA ํ์ต
### 1)LoRA ์ด๋ฆ ์์ด๋ก '์
๋ ฅ' 2)ํธ๋ฆฌ๊ฑฐ ๋จ์ด ์์ด๋ก '์
๋ ฅ' 3)๊ธฐ๋ณธ ๋ชจ๋ธ 'ํด๋ฆญ' 4)์ด๋ฏธ์ง(์ต์ 2์ฅ~์ต๋ 150์ฅ ๋ฏธ๋ง) '์
๋ก๋' 5)๋น์ ์ธ์ LLM ๋ผ๋ฒจ๋ง 'ํด๋ฆญ' 6)START ํด๋ฆญ""",
elem_classes=["markdown"]
)
with gr.Tab("Train"):
with gr.Column(elem_classes="container"):
# LoRA ์ค์ ๊ทธ๋ฃน
with gr.Group(elem_classes="input-group"):
with gr.Row():
lora_name = gr.Textbox(
label="LoRA ์ด๋ฆ",
info="๊ณ ์ ํ ์ด๋ฆ์ด์ด์ผ ํฉ๋๋ค",
placeholder="์: Persian Miniature Painting style, Cat Toy"
)
concept_sentence = gr.Textbox(
label="ํธ๋ฆฌ๊ฑฐ ๋จ์ด/๋ฌธ์ฅ",
info="์ฌ์ฉํ ํธ๋ฆฌ๊ฑฐ ๋จ์ด๋ ๋ฌธ์ฅ",
placeholder="p3rs0n์ด๋ trtcrd๊ฐ์ ํน์ดํ ๋จ์ด, ๋๋ 'in the style of CNSTLL'๊ฐ์ ๋ฌธ์ฅ"
)
model_warning = gr.Markdown(visible=False)
which_model = gr.Radio(
["๊ณ ํ๋ฆฌํฐ ๋ง์ถค ํ์ต ๋ชจ๋ธ"],
label="๊ธฐ๋ณธ ๋ชจ๋ธ",
value="[dev] (high quality model)"
)
# ์ด๋ฏธ์ง ์
๋ก๋ ์์ญ
with gr.Group(visible=True, elem_classes="image-upload-area") as image_upload:
with gr.Row():
images = gr.File(
file_types=["image", ".txt"],
label="Upload your images",
file_count="multiple",
interactive=True,
visible=True,
scale=1,
)
with gr.Column(scale=3, visible=False) as captioning_area:
with gr.Column():
gr.Markdown(
"""# ์ด๋ฏธ์ง ๋ผ๋ฒจ๋ง
<p style="margin-top:0"> ๋น์ ์ธ์ LLM์ด ์ด๋ฏธ์ง๋ฅผ ์ธ์ํ์ฌ ์๋์ผ๋ก ๋ผ๋ฒจ๋ง(์ด๋ฏธ์ง ์ธ์์ ์ํ ํ์ ์ค๋ช
). [trigger] 'ํธ๋ฆฌ๊ฑฐ ์๋'๋ ํ์ตํ ๋ชจ๋ธ์ ์คํํ๋ ๊ณ ์ ํค๊ฐ /trigger word.</p>
""", elem_classes="group_padding")
do_captioning = gr.Button("๋น์ ์ธ์ LLM ์๋ ๋ผ๋ฒจ๋ง")
output_components = [captioning_area]
caption_list = []
for i in range(1, MAX_IMAGES + 1):
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
with locals()[f"captioning_row_{i}"]:
locals()[f"image_{i}"] = gr.Image(
type="filepath",
width=111,
height=111,
min_width=111,
interactive=False,
scale=2,
show_label=False,
show_share_button=False,
show_download_button=False,
)
locals()[f"caption_{i}"] = gr.Textbox(
label=f"Caption {i}", scale=15, interactive=True
)
output_components.append(locals()[f"captioning_row_{i}"])
output_components.append(locals()[f"image_{i}"])
output_components.append(locals()[f"caption_{i}"])
caption_list.append(locals()[f"caption_{i}"])
with gr.Accordion("Advanced options", open=False):
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
with gr.Accordion("Even more advanced options", open=False):
if(is_spaces):
gr.Markdown("Attention: changing this parameters may make your training fail or go out-of-memory if training on Spaces. Only change settings here it if you know what you are doing. Beware that training is done in an L4 GPU with 24GB of RAM")
use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False)
more_advanced_options = gr.Code(config_yaml, language="yaml")
with gr.Accordion("Sample prompts (optional)", visible=False) as sample:
gr.Markdown(
"Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)"
)
sample_1 = gr.Textbox(label="Test prompt 1")
sample_2 = gr.Textbox(label="Test prompt 2")
sample_3 = gr.Textbox(label="Test prompt 3")
with gr.Group(visible=False) as cost_preview:
cost_preview_info = gr.Markdown(elem_id="cost_preview_info", elem_classes="group_padding")
payment_update = gr.Button("I have set up a payment method", visible=False)
output_components.append(sample)
output_components.append(sample_1)
output_components.append(sample_2)
output_components.append(sample_3)
start = gr.Button("START ํด๋ฆญ('์ฝ 25~30๋ถ ํ ํ์ต์ด ์ข
๋ฃ๋๊ณ ์๋ฃ ๋ฉ์์ง๊ฐ ์ถ๋ ฅ๋ฉ๋๋ค.)'", visible=False)
progress_area = gr.Markdown("")
dataset_folder = gr.State()
images.upload(
load_captioning,
inputs=[images, concept_sentence],
outputs=output_components
).then(
update_pricing,
inputs=[steps],
outputs=[cost_preview, cost_preview_info, payment_update, start]
)
images.clear(
hide_captioning,
outputs=[captioning_area, cost_preview, sample, start]
)
images.delete(
load_captioning,
inputs=[images, concept_sentence],
outputs=output_components
).then(
update_pricing,
inputs=[steps],
outputs=[cost_preview, cost_preview_info, payment_update, start]
)
gr.on(
triggers=[steps.change],
fn=update_pricing,
inputs=[steps],
outputs=[cost_preview, cost_preview_info, payment_update, start]
)
start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then(
fn=start_training,
inputs=[
lora_name,
concept_sentence,
which_model,
steps,
lr,
rank,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options
],
outputs=progress_area,
)
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True) |