openfree's picture
Update app.py
32ceba2 verified
raw
history blame
25.1 kB
import os
import subprocess
from typing import Union
from huggingface_hub import whoami, HfApi
from fastapi import FastAPI
from starlette.middleware.sessions import SessionMiddleware
import sys
# ai-toolkit์ด ์—†์œผ๋ฉด ์„ค์น˜
if not os.path.exists("ai-toolkit"):
subprocess.run("git clone https://github.com/ostris/ai-toolkit.git", shell=True)
subprocess.run("cd ai-toolkit && git submodule update --init --recursive", shell=True)
# ai-toolkit ๊ฒฝ๋กœ ์ถ”๊ฐ€
toolkit_path = os.path.join(os.getcwd(), "ai-toolkit")
sys.path.append(toolkit_path)
# ํ•„์š”ํ•œ ํŒจํ‚ค์ง€ ์„ค์น˜
subprocess.run("pip install -r ai-toolkit/requirements.txt", shell=True)
is_spaces = True if os.environ.get("SPACE_ID") else False
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
import sys
from dotenv import load_dotenv
load_dotenv()
# Add the current working directory to the Python path
sys.path.insert(0, os.getcwd())
import gradio as gr
from PIL import Image
import torch
import uuid
import shutil
import json
import yaml
from slugify import slugify
from transformers import AutoProcessor, AutoModelForCausalLM
# Gradio app ์„ค์ •
app = FastAPI()
app.add_middleware(SessionMiddleware, secret_key="your-secret-key")
if not is_spaces:
sys.path.insert(0, "ai-toolkit")
from toolkit.job import get_job
gr.OAuthProfile = None
gr.OAuthToken = None
MAX_IMAGES = 150
# Hugging Face ํ† ํฐ ์„ค์ •
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set")
if is_spaces:
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import spaces
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["HUGGING_FACE_HUB_TOKEN"] = HF_TOKEN
# HF API ์ดˆ๊ธฐํ™”
api = HfApi(token=HF_TOKEN)
def load_captioning(uploaded_files, concept_sentence):
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
updates = []
if len(uploaded_images) <= 1:
raise gr.Error(
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
)
elif len(uploaded_images) > MAX_IMAGES:
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
# Update for the captioning_area
# for _ in range(3):
updates.append(gr.update(visible=True))
# Update visibility and image for each captioning row and image
for i in range(1, MAX_IMAGES + 1):
# Determine if the current row and image should be visible
visible = i <= len(uploaded_images)
# Update visibility of the captioning row
updates.append(gr.update(visible=visible))
# Update for image component - display image if available, otherwise hide
image_value = uploaded_images[i - 1] if visible else None
updates.append(gr.update(value=image_value, visible=visible))
corresponding_caption = False
if(image_value):
base_name = os.path.splitext(os.path.basename(image_value))[0]
print(base_name)
print(image_value)
if base_name in txt_files_dict:
print("entrou")
with open(txt_files_dict[base_name], 'r') as file:
corresponding_caption = file.read()
# Update value of captioning area
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
updates.append(gr.update(value=text_value, visible=visible))
# Update for the sample caption area
updates.append(gr.update(visible=True))
# Update prompt samples
updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall"))
return updates
def hide_captioning():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def create_dataset(*inputs):
print("Creating dataset")
images = inputs[0]
destination_folder = str(f"datasets/{uuid.uuid4()}")
if not os.path.exists(destination_folder):
os.makedirs(destination_folder)
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
with open(jsonl_file_path, "a") as jsonl_file:
for index, image in enumerate(images):
new_image_path = shutil.copy(image, destination_folder)
original_caption = inputs[index + 1]
file_name = os.path.basename(new_image_path)
data = {"file_name": file_name, "prompt": original_caption}
jsonl_file.write(json.dumps(data) + "\n")
return destination_folder
def run_captioning(images, concept_sentence, *captions):
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True
).to(device)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
captions = list(captions)
for i, image_path in enumerate(images):
print(captions[i])
if isinstance(image_path, str): # If image is a file path
image = Image.open(image_path).convert("RGB")
prompt = "<DETAILED_CAPTION>"
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
if concept_sentence:
caption_text = f"{caption_text} [trigger]"
captions[i] = caption_text
yield captions
model.to("cpu")
del model
del processor
if is_spaces:
run_captioning = spaces.GPU()(run_captioning)
def recursive_update(d, u):
for k, v in u.items():
if isinstance(v, dict) and v:
d[k] = recursive_update(d.get(k, {}), v)
else:
d[k] = v
return d
def start_training(
lora_name,
concept_sentence,
which_model,
steps,
lr,
rank,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options,
):
if not lora_name:
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
try:
username = whoami()["name"]
except:
raise gr.Error("Failed to get username. Please check your HF_TOKEN.")
print("Started training")
slugged_lora_name = slugify(lora_name)
# Load the default config
with open("train_lora_flux_24gb.yaml", "r") as f:
config = yaml.safe_load(f)
# dev ๋ชจ๋ธ ์„ค์ •
config["config"]["name"] = slugged_lora_name
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-dev"
config["config"]["process"][0]["model"]["assistant_lora_path"] = None # adapter ์—†์ด ์„ค์ •
config["config"]["process"][0]["model"]["low_vram"] = False
config["config"]["process"][0]["train"]["skip_first_sample"] = True
config["config"]["process"][0]["train"]["steps"] = int(steps)
config["config"]["process"][0]["train"]["lr"] = float(lr)
config["config"]["process"][0]["network"]["linear"] = int(rank)
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
config["config"]["process"][0]["save"]["push_to_hub"] = True
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
config["config"]["process"][0]["save"]["hf_private"] = True
config["config"]["process"][0]["save"]["hf_token"] = HF_TOKEN
config["config"]["process"][0]["sample"]["sample_steps"] = 28
if concept_sentence:
config["config"]["process"][0]["trigger_word"] = concept_sentence
if sample_1 or sample_2 or sample_3:
config["config"]["process"][0]["train"]["disable_sampling"] = False
config["config"]["process"][0]["sample"]["sample_every"] = steps
config["config"]["process"][0]["sample"]["prompts"] = []
if sample_1:
config["config"]["process"][0]["sample"]["prompts"].append(sample_1)
if sample_2:
config["config"]["process"][0]["sample"]["prompts"].append(sample_2)
if sample_3:
config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
else:
config["config"]["process"][0]["train"]["disable_sampling"] = True
if(use_more_advanced_options):
more_advanced_options_dict = yaml.safe_load(more_advanced_options)
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
print(config)
try:
# Save the updated config
random_config_name = str(uuid.uuid4())
os.makedirs("tmp", exist_ok=True)
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
with open(config_path, "w") as f:
yaml.dump(config, f)
# ์ง์ ‘ ๋กœ์ปฌ GPU์—์„œ ํ•™์Šต ์‹คํ–‰
from toolkit.job import get_job
job = get_job(config_path)
job.run()
job.cleanup()
except Exception as e:
raise gr.Error(f"Training failed: {str(e)}")
return f"""# Training completed successfully!
## Your model is available at: <a href='https://huggingface.co/{username}/{slugged_lora_name}'>{username}/{slugged_lora_name}</a>"""
def update_pricing(steps):
try:
seconds_per_iteration = 7.54
total_seconds = (steps * seconds_per_iteration) + 240
cost_per_second = 0.80/60/60
cost = round(cost_per_second * total_seconds, 2)
cost_preview = f'''To train this LoRA, a paid L4 GPU will be hooked under the hood during training and then removed once finished.
### Estimated to cost <b>< US$ {str(cost)}</b> for {round(int(total_seconds)/60, 2)} minutes with your current train settings <small>({int(steps)} iterations at {seconds_per_iteration}s/it)</small>'''
return gr.update(visible=True), cost_preview, gr.update(visible=False), gr.update(visible=True)
except:
return gr.update(visible=False), "", gr.update(visible=False), gr.update(visible=True)
def swap_base_model(model):
return gr.update(visible=True) if model == "[dev] (high quality model, non-commercial license)" else gr.update(visible=False)
config_yaml = '''
device: cuda:0
model:
is_flux: true
quantize: true
network:
linear: 16 #it will overcome the 'rank' parameter
linear_alpha: 16 #you can have an alpha different than the ranking if you'd like
type: lora
sample:
guidance_scale: 3.5
height: 1024
neg: '' #doesn't work for FLUX
sample_every: 1000
sample_steps: 28
sampler: flowmatch
seed: 42
walk_seed: true
width: 1024
save:
dtype: float16
hf_private: true
max_step_saves_to_keep: 4
push_to_hub: true
save_every: 10000
train:
batch_size: 1
dtype: bf16
ema_config:
ema_decay: 0.99
use_ema: true
gradient_accumulation_steps: 1
gradient_checkpointing: true
noise_scheduler: flowmatch
optimizer: adamw8bit #options: prodigy, dadaptation, adamw, adamw8bit, lion, lion8bit
train_text_encoder: false #probably doesn't work for flux
train_unet: true
'''
custom_theme = gr.themes.Base(
primary_hue="indigo",
secondary_hue="slate",
neutral_hue="slate",
).set(
# ๊ธฐ๋ณธ ๋ฐฐ๊ฒฝ ๋ฐ ๋ณด๋”
background_fill_primary="#1a1a1a",
background_fill_secondary="#2d2d2d",
border_color_primary="#404040",
# ๋ฒ„ํŠผ ์Šคํƒ€์ผ
button_primary_background_fill="#4F46E5",
button_primary_background_fill_dark="#4338CA",
button_primary_background_fill_hover="#6366F1",
button_primary_border_color="#4F46E5",
button_primary_border_color_dark="#4338CA",
button_primary_text_color="white",
button_primary_text_color_dark="white",
button_secondary_background_fill="#374151",
button_secondary_background_fill_dark="#1F2937",
button_secondary_background_fill_hover="#4B5563",
button_secondary_text_color="white",
button_secondary_text_color_dark="white",
# ๋ธ”๋ก ์Šคํƒ€์ผ
block_background_fill="#2d2d2d",
block_background_fill_dark="#1F2937",
block_label_background_fill="#4F46E5",
block_label_background_fill_dark="#4338CA",
block_label_text_color="white",
block_label_text_color_dark="white",
block_title_text_color="white",
block_title_text_color_dark="white",
# ์ž…๋ ฅ ํ•„๋“œ ์Šคํƒ€์ผ
input_background_fill="#374151",
input_background_fill_dark="#1F2937",
input_border_color="#4B5563",
input_border_color_dark="#374151",
input_placeholder_color="#9CA3AF",
input_placeholder_color_dark="#6B7280",
# ๊ทธ๋ฆผ์ž ํšจ๊ณผ
shadow_spread="8px",
shadow_inset="0px 2px 4px 0px rgba(0,0,0,0.1)",
# ์ปจํ…Œ์ด๋„ˆ ์Šคํƒ€์ผ
panel_background_fill="#2d2d2d",
panel_background_fill_dark="#1F2937",
# ๋ณด๋” ์Šคํƒ€์ผ
border_color_accent="#4F46E5",
border_color_accent_dark="#4338CA"
)
css='''
/* ๊ธฐ๋ณธ ์Šคํƒ€์ผ */
h1 {
font-size: 3em;
text-align: center;
margin-bottom: 0.5em;
color: white !important;
}
h3 {
margin-top: 0;
font-size: 1.2em;
color: white !important;
}
/* Markdown ํ…์ŠคํŠธ ์Šคํƒ€์ผ */
.markdown {
color: white !important;
}
.markdown h1,
.markdown h2,
.markdown h3,
.markdown h4,
.markdown h5,
.markdown h6,
.markdown p {
color: white !important;
}
/* ์ปดํฌ๋„ŒํŠธ ์Šคํƒ€์ผ */
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
/* ์ž…๋ ฅ ํ•„๋“œ ์Šคํƒ€์ผ */
.input-group {
background: var(--block-background-fill);
padding: 15px;
border-radius: 12px;
margin-bottom: 20px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
/* ๋ชจ๋“  ์ž…๋ ฅ ํ•„๋“œ ํ…์ŠคํŠธ ์ƒ‰์ƒ */
input, textarea, .gradio-textbox input, .gradio-textbox textarea, .gradio-number input {
color: white !important;
}
/* ๋ผ๋ฒจ ํ…์ŠคํŠธ ์Šคํƒ€์ผ */
label, .label-text {
color: white !important;
}
/* ๋ผ๋””์˜ค ๋ฒ„ํŠผ ํ…์ŠคํŠธ */
.gradio-radio label span {
color: white !important;
}
/* ์ฒดํฌ๋ฐ•์Šค ํ…์ŠคํŠธ */
.gradio-checkbox label span {
color: white !important;
}
/* ๋ฒ„ํŠผ ์Šคํƒ€์ผ */
.button {
height: 40px;
border-radius: 8px;
transition: all 0.3s ease;
color: white !important;
}
.button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
/* ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ ์˜์—ญ */
.image-upload-area {
border: 2px dashed var(--input-border-color);
border-radius: 12px;
padding: 20px;
text-align: center;
margin-bottom: 20px;
color: white !important;
}
/* ์บก์…˜ ์˜์—ญ */
.caption-area {
background: var(--block-background-fill);
padding: 15px;
border-radius: 12px;
margin-top: 20px;
color: white !important;
}
.caption-row {
display: flex;
align-items: center;
margin-bottom: 10px;
gap: 10px;
}
/* ๊ณ ๊ธ‰ ์˜ต์…˜ ์˜์—ญ */
.advanced-options {
background: var(--block-background-fill);
padding: 15px;
border-radius: 12px;
margin-top: 20px;
color: white !important;
}
/* ์ง„ํ–‰ ์ƒํƒœ ํ‘œ์‹œ */
.progress-area {
background: var(--block-background-fill);
padding: 15px;
border-radius: 12px;
margin-top: 20px;
text-align: center;
color: white !important;
}
/* ํ”Œ๋ ˆ์ด์Šคํ™€๋” ํ…์ŠคํŠธ */
::placeholder {
color: rgba(255, 255, 255, 0.5) !important;
}
/* ์ฝ”๋“œ ์—๋””ํ„ฐ ํ…์ŠคํŠธ */
.gradio-code {
color: white !important;
}
/* ์•„์ฝ”๋””์–ธ ํ…์ŠคํŠธ */
.gradio-accordion .label-wrap {
color: white !important;
}
/* ๋ฐ˜์‘ํ˜• ๋””์ž์ธ */
@media (max-width: 768px) {
.caption-row {
flex-direction: column;
}
}
/* ์Šคํฌ๋กค๋ฐ” ์Šคํƒ€์ผ */
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-track {
background: var(--background-fill-primary);
border-radius: 4px;
}
::-webkit-scrollbar-thumb {
background: var(--primary-500);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: var(--primary-600);
}
/* ๋ชจ๋“  ํ…์ŠคํŠธ ์ž…๋ ฅ ์š”์†Œ */
.gradio-container input[type="text"],
.gradio-container textarea,
.gradio-container .input-text,
.gradio-container .input-textarea {
color: white !important;
}
/* ๋“œ๋กญ๋‹ค์šด ํ…์ŠคํŠธ */
select, option {
color: white !important;
}
/* ๋ฒ„ํŠผ ํ…์ŠคํŠธ */
button {
color: white !important;
}
'''
# Gradio ์•ฑ ์ˆ˜์ •
with gr.Blocks(theme=custom_theme, css=css) as demo:
gr.Markdown(
"""# ๐Ÿ†” Gini LoRA ํ•™์Šต
### 1)LoRA ์ด๋ฆ„ ์˜์–ด๋กœ '์ž…๋ ฅ' 2)ํŠธ๋ฆฌ๊ฑฐ ๋‹จ์–ด ์˜์–ด๋กœ '์ž…๋ ฅ' 3)๊ธฐ๋ณธ ๋ชจ๋ธ 'ํด๋ฆญ' 4)์ด๋ฏธ์ง€(์ตœ์†Œ 2์žฅ~์ตœ๋Œ€ 150์žฅ ๋ฏธ๋งŒ) '์—…๋กœ๋“œ' 5)๋น„์ „ ์ธ์‹ LLM ๋ผ๋ฒจ๋ง 'ํด๋ฆญ' 6)START ํด๋ฆญ""",
elem_classes=["markdown"]
)
with gr.Tab("Train"):
with gr.Column(elem_classes="container"):
# LoRA ์„ค์ • ๊ทธ๋ฃน
with gr.Group(elem_classes="input-group"):
with gr.Row():
lora_name = gr.Textbox(
label="LoRA ์ด๋ฆ„",
info="๊ณ ์œ ํ•œ ์ด๋ฆ„์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค",
placeholder="์˜ˆ: Persian Miniature Painting style, Cat Toy"
)
concept_sentence = gr.Textbox(
label="ํŠธ๋ฆฌ๊ฑฐ ๋‹จ์–ด/๋ฌธ์žฅ",
info="์‚ฌ์šฉํ•  ํŠธ๋ฆฌ๊ฑฐ ๋‹จ์–ด๋‚˜ ๋ฌธ์žฅ",
placeholder="p3rs0n์ด๋‚˜ trtcrd๊ฐ™์€ ํŠน์ดํ•œ ๋‹จ์–ด, ๋˜๋Š” 'in the style of CNSTLL'๊ฐ™์€ ๋ฌธ์žฅ"
)
model_warning = gr.Markdown(visible=False)
which_model = gr.Radio(
["๊ณ ํ€„๋ฆฌํ‹ฐ ๋งž์ถค ํ•™์Šต ๋ชจ๋ธ"],
label="๊ธฐ๋ณธ ๋ชจ๋ธ",
value="[dev] (high quality model)"
)
# ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ ์˜์—ญ
with gr.Group(visible=True, elem_classes="image-upload-area") as image_upload:
with gr.Row():
images = gr.File(
file_types=["image", ".txt"],
label="Upload your images",
file_count="multiple",
interactive=True,
visible=True,
scale=1,
)
with gr.Column(scale=3, visible=False) as captioning_area:
with gr.Column():
gr.Markdown(
"""# ์ด๋ฏธ์ง€ ๋ผ๋ฒจ๋ง
<p style="margin-top:0"> ๋น„์ „์ธ์‹ LLM์ด ์ด๋ฏธ์ง€๋ฅผ ์ธ์‹ํ•˜์—ฌ ์ž๋™์œผ๋กœ ๋ผ๋ฒจ๋ง(์ด๋ฏธ์ง€ ์ธ์‹์„ ์œ„ํ•œ ํ•„์ˆ˜ ์„ค๋ช…). [trigger] 'ํŠธ๋ฆฌ๊ฑฐ ์›Œ๋“œ'๋Š” ํ•™์Šตํ•œ ๋ชจ๋ธ์„ ์‹คํ–‰ํ•˜๋Š” ๊ณ ์œ  ํ‚ค๊ฐ’ /trigger word.</p>
""", elem_classes="group_padding")
do_captioning = gr.Button("๋น„์ „ ์ธ์‹ LLM ์ž๋™ ๋ผ๋ฒจ๋ง")
output_components = [captioning_area]
caption_list = []
for i in range(1, MAX_IMAGES + 1):
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
with locals()[f"captioning_row_{i}"]:
locals()[f"image_{i}"] = gr.Image(
type="filepath",
width=111,
height=111,
min_width=111,
interactive=False,
scale=2,
show_label=False,
show_share_button=False,
show_download_button=False,
)
locals()[f"caption_{i}"] = gr.Textbox(
label=f"Caption {i}", scale=15, interactive=True
)
output_components.append(locals()[f"captioning_row_{i}"])
output_components.append(locals()[f"image_{i}"])
output_components.append(locals()[f"caption_{i}"])
caption_list.append(locals()[f"caption_{i}"])
with gr.Accordion("Advanced options", open=False):
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
with gr.Accordion("Even more advanced options", open=False):
if(is_spaces):
gr.Markdown("Attention: changing this parameters may make your training fail or go out-of-memory if training on Spaces. Only change settings here it if you know what you are doing. Beware that training is done in an L4 GPU with 24GB of RAM")
use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False)
more_advanced_options = gr.Code(config_yaml, language="yaml")
with gr.Accordion("Sample prompts (optional)", visible=False) as sample:
gr.Markdown(
"Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)"
)
sample_1 = gr.Textbox(label="Test prompt 1")
sample_2 = gr.Textbox(label="Test prompt 2")
sample_3 = gr.Textbox(label="Test prompt 3")
with gr.Group(visible=False) as cost_preview:
cost_preview_info = gr.Markdown(elem_id="cost_preview_info", elem_classes="group_padding")
payment_update = gr.Button("I have set up a payment method", visible=False)
output_components.append(sample)
output_components.append(sample_1)
output_components.append(sample_2)
output_components.append(sample_3)
start = gr.Button("START ํด๋ฆญ('์•ฝ 25~30๋ถ„ ํ›„ ํ•™์Šต์ด ์ข…๋ฃŒ๋˜๊ณ  ์™„๋ฃŒ ๋ฉ”์‹œ์ง€๊ฐ€ ์ถœ๋ ฅ๋ฉ๋‹ˆ๋‹ค.)'", visible=False)
progress_area = gr.Markdown("")
dataset_folder = gr.State()
images.upload(
load_captioning,
inputs=[images, concept_sentence],
outputs=output_components
).then(
update_pricing,
inputs=[steps],
outputs=[cost_preview, cost_preview_info, payment_update, start]
)
images.clear(
hide_captioning,
outputs=[captioning_area, cost_preview, sample, start]
)
images.delete(
load_captioning,
inputs=[images, concept_sentence],
outputs=output_components
).then(
update_pricing,
inputs=[steps],
outputs=[cost_preview, cost_preview_info, payment_update, start]
)
gr.on(
triggers=[steps.change],
fn=update_pricing,
inputs=[steps],
outputs=[cost_preview, cost_preview_info, payment_update, start]
)
start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then(
fn=start_training,
inputs=[
lora_name,
concept_sentence,
which_model,
steps,
lr,
rank,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options
],
outputs=progress_area,
)
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)