File size: 41,196 Bytes
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a0468
 
 
 
 
c86ed06
 
2e2dda5
 
eb03410
2e2dda5
 
 
2034f95
 
 
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
b5148de
 
 
 
 
 
 
 
 
 
 
 
44b28ff
b5148de
 
 
 
 
 
df6a2d0
 
47287da
c86ed06
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c86ed06
 
 
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca368ff
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb03410
 
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb03410
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb03410
2e2dda5
 
 
eb03410
2e2dda5
 
 
eb03410
2e2dda5
 
 
 
 
 
 
eb03410
2e2dda5
 
 
72c9086
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
72c9086
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb03410
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb03410
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb03410
2e2dda5
 
 
 
 
 
 
eb03410
2e2dda5
 
 
 
 
 
 
 
 
eb03410
 
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c3f23a
 
 
 
 
 
 
 
2e2dda5
 
 
 
 
 
 
eb03410
2e2dda5
 
 
ca368ff
2e2dda5
 
 
 
 
 
 
 
eb03410
2e2dda5
 
 
1cab053
7705989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2dda5
7705989
 
2e2dda5
7705989
2e2dda5
7705989
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2dda5
 
c86ed06
 
2e2dda5
c86ed06
2e2dda5
c86ed06
 
 
2e2dda5
 
 
 
72c9086
2e2dda5
 
 
 
 
 
 
 
 
 
eb03410
2e2dda5
 
 
 
 
 
475a4b0
762f692
475a4b0
 
 
 
 
 
 
 
 
 
 
 
24860c1
475a4b0
c86ed06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475a4b0
 
 
 
 
 
 
 
 
 
 
 
2e2dda5
475a4b0
 
 
 
2e2dda5
475a4b0
 
 
 
 
2e2dda5
475a4b0
2e2dda5
475a4b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2dda5
475a4b0
 
 
 
 
 
 
 
 
eb03410
58eb742
 
2e2dda5
58eb742
 
 
 
2e2dda5
58eb742
 
 
 
 
2e2dda5
58eb742
 
 
 
 
2e2dda5
58eb742
 
2e2dda5
58eb742
 
 
 
2e2dda5
58eb742
 
 
 
 
 
2e2dda5
58eb742
 
2e2dda5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
import streamlit as st
import math
import io
import uuid
import os
import sys
import boto3
import requests
from requests_aws4auth import AWS4Auth
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/semantic_search")
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG")
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities")
from boto3 import Session
from pathlib import Path    
import botocore.session
import subprocess
#import os_index_df_sql
import json
import random
import string
from PIL import Image 
import urllib.request 
import base64
import shutil
import re
from requests.auth import HTTPBasicAuth
import nltk
try:
    nltk.data.find("tokenizers/punkt")
except LookupError:
    nltk.download("punkt")
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
import query_rewrite
import amazon_rekognition
from streamlit.components.v1 import html
#from st_click_detector import click_detector
import llm_eval
import all_search_execute
import warnings

warnings.filterwarnings("ignore", category=DeprecationWarning)
st.set_page_config(
    page_icon="images/opensearch_mark_default.png"
)
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1])
st.markdown("""
        <style>
               .block-container {
                    padding-top: 2.75rem;
                    padding-bottom: 0rem;
                    padding-left: 5rem;
                    padding-right: 5rem;
                }
        </style>
        """, unsafe_allow_html=True)
# st.markdown("""
# <style>
# /* 1. Fix only the inner sidebar user content */
# div[data-testid="stSidebarUserContent"] {
#     position: fixed;
#     top: 0;
#     left: 0;
#     height: 100vh;
#     overflow-y: auto;
#     width: inherit;
#     z-index: 999;
# }

# /* 2. Optional: Prevent double scroll bar from outer sidebar (only if needed) */
# div[data-testid="stSidebarContent"] {
#     overflow: hidden !important;
# }
# </style>
# """, unsafe_allow_html=True)



ps = PorterStemmer()

st.session_state.REGION = 'us-east-1'
USER_ICON = "images/user.png"
AI_ICON = "images/opensearch-twitter-card.png"
REGENERATE_ICON = "images/regenerate.png"
IMAGE_ICON = "images/Image_Icon.png"
TEXT_ICON = "images/text.png"
s3_bucket_ = "pdf-repo-uploads"
            #"pdf-repo-uploads"

# Check if the user ID is already stored in the session state
if 'user_id' in st.session_state:
    user_id = st.session_state['user_id']
    print(f"User ID: {user_id}")

# If the user ID is not yet stored in the session state, generate a random UUID
# else:
#     user_id = str(uuid.uuid4())
#     st.session_state['user_id'] = user_id
#     dynamodb = boto3.resource('dynamodb')
#     table = dynamodb.Table('ml-search')
    


if 'session_id' not in st.session_state:
    st.session_state['session_id'] = ""
    
if 'input_reranker' not in st.session_state:
    st.session_state['input_reranker'] = "None"#"Cross Encoder"
    
if "chats" not in st.session_state:
    st.session_state.chats = [
        {
            'id': 0,
            'question': '',
            'answer': ''
        }
    ]

if "questions" not in st.session_state:
    st.session_state.questions = []

if "input_mvector_rerank" not in st.session_state:
    st.session_state.input_colBert_rerank = False    
    
if "clear_" not in st.session_state:
    st.session_state.clear_ = False
    
if "input_clear_filter" not in st.session_state:
    st.session_state.input_clear_filter = False
    
 
if "radio_disabled" not in st.session_state:
    st.session_state.radio_disabled = True

if "input_rad_1" not in st.session_state:
    st.session_state.input_rad_1 = ""

if "input_manual_filter" not in st.session_state:
    st.session_state.input_manual_filter = ""

if "input_category" not in st.session_state:
    st.session_state.input_category = None
    
if "input_gender" not in st.session_state:
    st.session_state.input_gender = None
    
# if "input_price" not in st.session_state:
#     st.session_state.input_price = (0,0)
    
if "input_sql_query" not in st.session_state:
    st.session_state.input_sql_query = ""
if "input_rewritten_query" not in st.session_state:
    st.session_state.input_rewritten_query = ""

if "input_hybridType" not in st.session_state:
    st.session_state.input_hybridType = "OpenSearch Hybrid Query"

if "ndcg_increase" not in st.session_state:
    st.session_state.ndcg_increase = " ~ "
    
if "inputs_" not in st.session_state:
    st.session_state.inputs_ = {}
    
if "img_container" not in st.session_state:
    st.session_state.img_container = ""

if "input_rekog_directoutput" not in st.session_state:
    st.session_state.input_rekog_directoutput = {}

if "input_weightage" not in st.session_state:
    st.session_state.input_weightage = {}   

if "img_gen" not in st.session_state:
    st.session_state.img_gen = []

if "answers" not in st.session_state:
    st.session_state.answers = []

if "answers_none_rank" not in st.session_state:
    st.session_state.answers_none_rank = []


if "input_text" not in st.session_state:
    st.session_state.input_text="black jacket for men"#"black jacket for men under 120 dollars"
    
if "input_ndcg" not in st.session_state:
    st.session_state.input_ndcg=0.0  

if "gen_image_str" not in st.session_state:
    st.session_state.gen_image_str=""

if "input_NormType" not in st.session_state:
    st.session_state.input_NormType = "min_max"

if "input_CombineType" not in st.session_state:
    st.session_state.input_CombineType = "arithmetic_mean"

if "input_sparse" not in st.session_state:
    st.session_state.input_sparse = "disabled"
    
if "input_evaluate" not in st.session_state:
    st.session_state.input_evaluate = "disabled"
    
if "input_is_rewrite_query" not in st.session_state:
    st.session_state.input_is_rewrite_query = "disabled"
    
    
if "input_rekog_label" not in st.session_state:
    st.session_state.input_rekog_label = ""
    

if "input_sparse_filter" not in st.session_state:
    st.session_state.input_sparse_filter = 0.5

if "input_modelType" not in st.session_state:
    st.session_state.input_modelType = "Titan-Embed-Text-v1"

if "input_weight" not in st.session_state:
    st.session_state.input_weight = 0.5

if "image_prompt2" not in st.session_state:
    st.session_state.image_prompt2 = ""

if "image_prompt" not in st.session_state:
    st.session_state.image_prompt = ""
    
if "bytes_for_rekog" not in st.session_state:
    st.session_state.bytes_for_rekog = ""
    
if "OpenSearchDomainEndpoint" not in st.session_state:
    st.session_state.OpenSearchDomainEndpoint = "search-opensearchservi-shjckef2t7wo-iyv6rajdgxg6jas25aupuxev6i.us-west-2.es.amazonaws.com"
    
if "max_selections" not in st.session_state:
    st.session_state.max_selections = "None"
    
if "re_ranker" not in st.session_state:
    st.session_state.re_ranker = "true"

host = 'https://'+st.session_state.OpenSearchDomainEndpoint+'/'
service = 'es'
#credentials = boto3.Session().get_credentials()
awsauth = awsauth = HTTPBasicAuth('master',st.secrets['ml_search_demo_api_access'])
headers = {"Content-Type": "application/json"}
   
if "REGION" not in st.session_state:
    st.session_state.REGION = ""
    
if "BEDROCK_MULTIMODAL_MODEL_ID" not in st.session_state:
    st.session_state.BEDROCK_MULTIMODAL_MODEL_ID = "p_Qk-ZMBcuw9xT4ly3_B"
    
if "search_types" not in st.session_state:
    st.session_state.search_types = 'Keyword Search,Vector Search,Multimodal Search,NeuralSparse Search',
    
if "KendraResourcePlanID" not in st.session_state:
    st.session_state.KendraResourcePlanID= ""

if "SAGEMAKER_CrossEncoder_MODEL_ID" not in st.session_state:
    st.session_state.SAGEMAKER_CrossEncoder_MODEL_ID = "deBS3pYB5VHEj-qVuPHT" 
    
    
if "SAGEMAKER_SPARSE_MODEL_ID" not in st.session_state:
    st.session_state.SAGEMAKER_SPARSE_MODEL_ID = "fkol-ZMBTp0efWqBcO2P"  
    
if "BEDROCK_TEXT_MODEL_ID" not in st.session_state:
    st.session_state.BEDROCK_TEXT_MODEL_ID = "usQk-ZMBkiQuoz1QFmXN" 
#bytes_for_rekog = ""
bedrock_ = boto3.client('bedrock-runtime',
    aws_access_key_id=st.secrets['user_access_key'],
    aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1')
search_all_type = True
if(search_all_type==True):
    search_types = ['Keyword Search',
    'Vector Search', 
    'Multimodal Search',
    'NeuralSparse Search',
    ]





    
    
def generate_images(tab,inp_):
        #write_top_bar()
        seed = random.randint(1, 10)
        request = json.dumps(
                    {
                        "taskType": "TEXT_IMAGE",
                        "textToImageParams": {"text": st.session_state.image_prompt},
                        "imageGenerationConfig": {
                            "numberOfImages": 3,
                            "quality": "standard",
                            "cfgScale": 8.0,
                            "height": 512,
                            "width": 512,
                            "seed": seed,
                        },
                    }
                )

        if(inp_!=st.session_state.image_prompt):
            print("call bedrocck")
            response = bedrock_.invoke_model(
            modelId="amazon.titan-image-generator-v1", body=request
            )
            
            response_body = json.loads(response["body"].read())
            st.session_state.img_gen = response_body["images"]
        gen_images_dir = os.path.join(parent_dirname, "gen_images")
        if os.path.exists(gen_images_dir):
            shutil.rmtree(gen_images_dir)
        os.mkdir(gen_images_dir)
        width_ = 200
        height_ = 200
        index_ = 0
        #if(inp_!=st.session_state.image_prompt):
        
        if(len(st.session_state.img_gen)==0 and st.session_state.clear_ == True):
            #write_top_bar()
            placeholder1 = st.empty()
            with tab:
                with placeholder1.container():
                    st.empty()

        images_dis = []
        for image_ in st.session_state.img_gen:
            st.session_state.radio_disabled  = False
            if(index_==0):
                # with tab:
                #     rad1, rad2,rad3  = st.columns([98,1,1])
                # if(st.session_state.input_rad_1 is None):
                #     rand_ = ""
                # else:
                #     rand_ = st.session_state.input_rad_1
                # if(inp_!=st.session_state.image_prompt+rand_):
                #     with rad1:
                #         sel_rad_1 = st.radio("Choose one image", ["1","2","3"],index=None, horizontal = True,key = 'input_rad_1')

                with tab:
                    #sel_image = st.radio("", ["1","2","3"],index=None, horizontal = True)
                    if(st.session_state.img_container!=""):
                        st.session_state.img_container.empty()
                    place_ = st.empty()
                    img1, img2,img3  = place_.columns([30,30,30])
                    st.session_state.img_container = place_
                img_arr = [img1, img2,img3]
            
            base64_image_data = image_

            #st.session_state.gen_image_str = base64_image_data

            print("perform multimodal search")
        
            Image.MAX_IMAGE_PIXELS = 100000000
            filename = st.session_state.image_prompt+"_gen_"+str(index_)
            photo = parent_dirname+"/gen_images/"+filename+'.jpg'  # I assume you have a way of picking unique filenames
            imgdata = base64.b64decode(base64_image_data)
            with open(photo, 'wb') as f:
                f.write(imgdata) 

            
            
            with Image.open(photo) as image:    
                file_type = 'jpg'
                path = image.filename.rsplit(".", 1)[0]
                image.thumbnail((width_, height_))
                image.save(parent_dirname+"/gen_images/"+filename+"-resized_display."+file_type)

            with img_arr[index_]:
                placeholder_ = st.empty()
                placeholder_.image(parent_dirname+"/gen_images/"+filename+"-resized_display."+file_type)

            index_ = index_ + 1
      


def handle_input():
    if("text" in st.session_state.inputs_):
        if(st.session_state.inputs_["text"] != st.session_state.input_text):
            st.session_state.input_ndcg=0.0
    st.session_state.bytes_for_rekog = ""
    print("***")
    
    if(st.session_state.img_doc is not None or (st.session_state.input_rad_1 is not None and st.session_state.input_rad_1!="") ):#and st.session_state.input_searchType == 'Multi-modal Search'):
        print("perform multimodal search")
        st.session_state.input_imageUpload = 'yes'
        if(st.session_state.input_rad_1 is not None and st.session_state.input_rad_1!=""):
            
            num_str = str(int(st.session_state.input_rad_1.strip())-1)
            with open(parent_dirname+"/gen_images/"+st.session_state.image_prompt+"_gen_"+num_str+"-resized_display.jpg", "rb") as image_file:
                input_image = base64.b64encode(image_file.read()).decode("utf8")
                st.session_state.input_image = input_image
        
            if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType):
                st.session_state.bytes_for_rekog = Path(parent_dirname+"/gen_images/"+st.session_state.image_prompt+"_gen_"+num_str+".jpg").read_bytes()
        else:
            Image.MAX_IMAGE_PIXELS = 100000000
            width = 2048
            height = 2048
            uploaded_images = os.path.join(parent_dirname, "uploaded_images")

            if not os.path.exists(uploaded_images):
                os.mkdir(uploaded_images)

            with open(os.path.join(parent_dirname+"/uploaded_images",st.session_state.img_doc.name),"wb") as f: 
                f.write(st.session_state.img_doc.getbuffer())  
            photo = parent_dirname+"/uploaded_images/"+st.session_state.img_doc.name
            with Image.open(photo) as image:
                image.verify()

            with Image.open(photo) as image:  
                width_ = 200
                height_ = 200  
                if image.format.upper() in ["JPEG", "PNG","JPG"]:
                    path = image.filename.rsplit(".", 1)[0]
                    org_file_type = st.session_state.img_doc.name.split(".")[1]
                    image.thumbnail((width, height))
                    if(org_file_type.upper()=="PNG"):
                        file_type = "jpg"
                        image.convert('RGB').save(f"{path}-resized.{file_type}")
                    else:
                        file_type = org_file_type
                        image.save(f"{path}-resized.{file_type}")
                    
                    image.thumbnail((width_, height_))
                    image.save(f"{path}-resized_display.{org_file_type}")


            with open(photo.split(".")[0]+"-resized."+file_type, "rb") as image_file:
                input_image = base64.b64encode(image_file.read()).decode("utf8")
                st.session_state.input_image = input_image
                
            if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType):  
                st.session_state.bytes_for_rekog = Path(parent_dirname+"/uploaded_images/"+st.session_state.img_doc.name).read_bytes()
       
                
        
            
    else:
        print("no image uploaded")
        st.session_state.input_imageUpload = 'no'
        st.session_state.input_image = ''


    inputs = {}
    if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType):
        old_rekog_label = st.session_state.input_rekog_label
        st.session_state.input_rekog_label = amazon_rekognition.extract_image_metadata(st.session_state.bytes_for_rekog)
        if(st.session_state.input_text == ""):
            st.session_state.input_text = st.session_state.input_rekog_label
            

    weightage = {}
    st.session_state.weights_ = []
    total_weight = 0.0
    counter = 0
    num_search = len(st.session_state.input_searchType)
    any_weight_zero = False
    for type in st.session_state.input_searchType:
        key_weight = "input_"+type.split(" ")[0]+"-weight"
        total_weight = total_weight + st.session_state[key_weight]
        if(st.session_state[key_weight]==0):
            any_weight_zero = True
    print(total_weight)
    for key in st.session_state:
        
        if(key.startswith('input_')):
            original_key = key.removeprefix('input_')
            if('weight' not in key):
                inputs[original_key] = st.session_state[key]
            else:
                if(original_key.split("-")[0] + " Search" in st.session_state.input_searchType):
                    counter = counter +1
                    if(total_weight!=100 or any_weight_zero == True):
                        extra_weight = 100%num_search
                        if(counter == num_search):
                            cal_weight = math.trunc(100/num_search)+extra_weight
                        else:
                            cal_weight = math.trunc(100/num_search)
                            
                        st.session_state[key] = cal_weight
                        weightage[original_key] = cal_weight
                        st.session_state.weights_.append(cal_weight)
                    else:
                        weightage[original_key] = st.session_state[key]
                        st.session_state.weights_.append(st.session_state[key])
                else:
                    weightage[original_key] = 0.0
                    st.session_state[key] = 0.0
    
    inputs['weightage']=weightage
    st.session_state.input_weightage = weightage
    
            
    st.session_state.inputs_ = inputs
    
    question_with_id = {
        'question': inputs["text"],
        'id': len(st.session_state.questions)
    }
    st.session_state.questions = []
    st.session_state.questions.append(question_with_id)
    
    st.session_state.answers = []
    
    if(st.session_state.input_is_sql_query == 'enabled'):
        os_index_df_sql.sql_process(st.session_state.input_text)
        print(st.session_state.input_sql_query)
    else:
        st.session_state.input_sql_query = ""
        
    
    if(st.session_state.input_is_rewrite_query == 'enabled' or (st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType)):
        query_rewrite.get_new_query_res(st.session_state.input_text)
        
    else:
        st.session_state.input_rewritten_query = ""
        

    ans__ = all_search_execute.handler(inputs, st.session_state['session_id'])
    
    st.session_state.answers.append({
        'answer': ans__,
        'search_type':inputs['searchType'],
        'id': len(st.session_state.questions)
    })
    
    st.session_state.answers_none_rank = st.session_state.answers
    if(st.session_state.input_evaluate == "enabled"):
        llm_eval.eval(st.session_state.questions, st.session_state.answers)
    
def write_top_bar():
    col1, col2,col3,col4  = st.columns([2.5,35,8,7])
    with col1:
        st.image(TEXT_ICON, use_column_width='always')
    with col2:
        #st.markdown("")
        input = st.text_input( "Ask here",label_visibility = "collapsed",key="input_text",placeholder = "Type your query")
    with col3:
        play = st.button("Search",on_click=handle_input,key = "play")
        
    with col4:
        clear = st.button("Clear")
    
    col5, col6  = st.columns([4.5,95])

    with col5:
        st.image(IMAGE_ICON, use_column_width='always')
    with col6:   
        with st.expander(':green[Search by using an image]'):
            tab2, tab1 = st.tabs(["Upload Image","Generate Image by AI"])
            
            with tab1:
                c1,c2 = st.columns([80,20])
                with c1:
                    gen_images=st.text_area("Text2Image:",placeholder = "Enter the text prompt to generate images",height = 68, key = "image_prompt")
                with c2:
                    st.markdown("<div style = 'height:43px'></div>",unsafe_allow_html=True)
                    st.button("Generate",disabled=False,key = "generate",on_click = generate_images, args=(tab1,"default_img"))
                
                image_select = st.radio("Choose one image", ["Image 1","Image 2","Image 3"],index=None, horizontal = True,key = 'image_select',disabled = st.session_state.radio_disabled)
                st.markdown("""
                            <style>
                            [role=radiogroup]{
                                gap: 6rem;
                            }
                            </style>
                            """,unsafe_allow_html=True)
                if(st.session_state.image_select is not None and st.session_state.image_select !="" and len(st.session_state.img_gen)!=0):
                    st.session_state.input_rad_1 = st.session_state.image_select.split(" ")[1]
                else:
                    st.session_state.input_rad_1 = ""
                


        generate_images(tab1,gen_images)   
            
            
        with tab2:
            st.session_state.img_doc = st.file_uploader(
            "Upload image", accept_multiple_files=False,type = ['png', 'jpg'])
    return clear,tab1

clear,tab_ = write_top_bar()

if clear:
    st.session_state.questions = []
    st.session_state.answers = []
    
    st.session_state.clear_ = True
    st.session_state.image_prompt2 = ""
    st.session_state.input_rekog_label = ""
    
    st.session_state.radio_disabled = True
    
    if(len(st.session_state.img_gen)!=0):
        st.session_state.img_container.empty()
        st.session_state.img_gen = []
        st.session_state.input_rad_1 = ""
    
        
       
col1, col3, col4 = st.columns([70,18,12])

with col1:
    
    if(st.session_state.max_selections == "" or st.session_state.max_selections == "1"):
        st.session_state.max_selections = 1
    if(st.session_state.max_selections == "None"):
        st.session_state.max_selections = None
    search_type = st.multiselect('Select the Search type(s)',
    search_types,['Keyword Search'],
    max_selections = st.session_state.max_selections,
   
    key = 'input_searchType',
    help = "Select the type of Search, adding more than one search type will activate hybrid search"#\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers)"
    )

with col3:
    st.number_input("No. of docs", min_value=1, max_value=50, value=5, step=5,  key='input_K', help=None)
with col4:
    st.markdown("<div style='fontSize:14.5px'>Evaluate</div>",unsafe_allow_html=True)
    evaluate = st.toggle(' ', key = 'evaluate', disabled = False) #help = "Checking this box will use LLM to evaluate results as relevant and irrelevant. \n\n This option increases the latency")
    if(evaluate):
        st.session_state.input_evaluate = "enabled"
        
    else:
        st.session_state.input_evaluate = "disabled"
        

if(search_all_type == True or 1==1):
    with st.sidebar:
        st.page_link("app.py", label=":orange[Home]", icon="🏠")
        

        ########################## enable for query_rewrite ########################
        rewrite_query = st.checkbox('Auto-apply filters', key = 'query_rewrite', disabled = False, help = "Checking this box will use LLM to rewrite your query. \n\n Here your natural language query is transformed into OpenSearch query with added filters and attributes")
        st.multiselect('Fields for "MUST" filter',
                ('Price','Gender', 'Color', 'Category', 'Style'),['Category'],
   
                key = 'input_must',
               )
        ########################## enable for query_rewrite ########################


        ####### Filters   #########
        
        st.subheader(':blue[Filters]')
        def clear_filter():
            st.session_state.input_manual_filter="False"
            st.session_state.input_category=None
            st.session_state.input_gender=None
            st.session_state.input_price=(0,0)
            handle_input()
        filter_place_holder = st.container()
        with filter_place_holder:
            st.selectbox("Select one Category", ("accessories", "books","floral","furniture","hot_dispensed","jewelry","tools","apparel","cold_dispensed","food_service","groceries","housewares","outdoors","salty_snacks","videos","beauty","electronics","footwear","homedecor","instruments","seasonal"),index = None,key = "input_category")
            st.selectbox("Select one Gender", ("male","female"),index = None,key = "input_gender")
            st.slider("Select a range of price", 0, 2000, (0, 0),50, key = "input_price")
        
        if(st.session_state.input_category!=None or st.session_state.input_gender!=None or st.session_state.input_price!=(0,0)):
            st.session_state.input_manual_filter="True"
        else:
            st.session_state.input_manual_filter="False"

   
        clear_filter = st.button("Clear Filters",on_click=clear_filter)
        ####### Filters   #########
        
        if('NeuralSparse Search' in st.session_state.search_types):
            st.subheader(':blue[Neural Sparse Search]')
            sparse_filter = st.slider('Keep only sparse tokens with weight >=', 0.0, 1.0, 0.5,0.1,key = 'input_sparse_filter', help = 'Use this slider to set the minimum weight that the sparse vector token weights should meet, rest are filtered out')


        st.session_state.input_is_rewrite_query = 'disabled'
        st.session_state.input_is_sql_query = 'disabled'
        
        ########################## enable for query_rewrite ########################
        if rewrite_query:
            st.session_state.input_is_rewrite_query = 'enabled'
        st.subheader(':blue[Vector Search]')
        
        mvector_rerank = st.checkbox("Search and Re-rank with Token level vectors",key = 'mvector_rerank',help = "Enabling this option uses 'all-MiniLM-L6-v2' model's token level embeddings to retrieve documents and MaxSim to re-rank documents.\n\n Hugging Face Model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2")
        
        if(mvector_rerank):
            st.session_state.input_mvector_rerank = True
        else:
            st.session_state.input_mvector_rerank = False
        st.subheader(':blue[Hybrid Search]')
        with st.expander("Set query Weightage:"):
            st.number_input("Keyword %", min_value=0, max_value=100, value=100, step=5,  key='input_Keyword-weight', help=None)
            st.number_input("Vector %", min_value=0, max_value=100, value=0, step=5,  key='input_Vector-weight', help=None)
            st.number_input("Multimodal %", min_value=0, max_value=100, value=0, step=5,  key='input_Multimodal-weight', help=None)
            st.number_input("NeuralSparse %", min_value=0, max_value=100, value=0, step=5,  key='input_NeuralSparse-weight', help=None)
        
       
        if(st.session_state.re_ranker == "true"):
            st.subheader(':blue[Re-ranking]')
            reranker = st.selectbox('Choose a Re-Ranker',
            ('None','Cohere Rerank'#'Kendra Rescore'

            ),

            key = 'input_reranker',
            help = 'Select the Re-Ranker type, select "None" to apply no re-ranking of the results',
            args=(st.session_state.questions, st.session_state.answers)

            )
       


def write_user_message(md,ans):
    if(len(ans["answer"])>0):
        ans = ans["answer"][0]
        col1, col2, col3 = st.columns([3,40,20])
        
        with col1:
            st.image(USER_ICON, use_column_width='always')
        with col2:
            st.markdown("<div style='fontSize:15px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>Input Text: </div><div style='fontSize:25px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;font-style: italic;color:#e28743'>"+md['question']+"</div>", unsafe_allow_html = True)
            if('query_sparse' in ans):
                with st.expander("Expanded Query:"):
                    query_sparse = dict(sorted(ans['query_sparse'].items(), key=lambda item: item[1],reverse=True))
                    filtered_query_sparse = dict()
                    for key in query_sparse:
                        filtered_query_sparse[key] = round(query_sparse[key], 2)
                    st.write(filtered_query_sparse)
            if(st.session_state.input_is_rewrite_query == "enabled" and st.session_state.input_rewritten_query !=""):
                with st.expander("Re-written Query:"):
                    st.json(st.session_state.input_rewritten_query,expanded = True)
                    
                
        with col3:   
            st.markdown("<div style='fontSize:15px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>Input Image: </div>", unsafe_allow_html = True)
    
            if(st.session_state.input_imageUpload == 'yes'):

                if(st.session_state.input_rad_1 is not None and st.session_state.input_rad_1!=""):
                    num_str = str(int(st.session_state.input_rad_1.strip())-1)
                    img_file = parent_dirname+"/gen_images/"+st.session_state.image_prompt+"_gen_"+num_str+"-resized_display.jpg"
                else:
                    img_file = parent_dirname+"/uploaded_images/"+st.session_state.img_doc.name.split(".")[0]+"-resized_display."+st.session_state.img_doc.name.split(".")[1]
        
                st.image(img_file)
                if(st.session_state.input_rekog_label !=""):
                    with st.expander("Enriched Query Metadata:"):
                            st.markdown('<p>'+json.dumps(st.session_state.input_rekog_directoutput)+'<p>',unsafe_allow_html=True)
            else:
                st.markdown("<div style='fontSize:15px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>None</div>", unsafe_allow_html = True)
                
        st.markdown('---')
        

def stem_(sentence):
    words = word_tokenize(sentence)
    
    words_stem = []

    for w in words:
        words_stem.append( ps.stem(w))
    return words_stem

def render_answer(answer,index):
    column1, column2 = st.columns([6,90])
    with column1:
        st.image(AI_ICON, use_column_width='always')
    with column2:
        st.markdown("<div style='fontSize:25px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>Results </div>", unsafe_allow_html = True)
        if(st.session_state.input_evaluate == "enabled" and st.session_state.input_ndcg > 0):
            span_color = "white"
            if("&uarr;" in st.session_state.ndcg_increase):
                span_color = "green"
            if("&darr;" in st.session_state.ndcg_increase):
                span_color = "red"
            st.markdown("<span style='fontSize:20px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 20px;font-family:Courier New;color:#e28743'>Relevance:" +str('%.3f'%(st.session_state.input_ndcg)) + "</span><span style='font-size:30px;font-weight:bold;color:"+span_color+"'>"+st.session_state.ndcg_increase.split("~")[0] +"</span><span style='font-size:15px;font-weight:bold;font-family:Courier New;color:"+span_color+"'> "+st.session_state.ndcg_increase.split("~")[1]+"</span>", unsafe_allow_html = True)
        
           

    placeholder_no_results  = st.empty()

    col_1, col_2,col_3 = st.columns([70,10,20])
    i = 0
    filter_out = 0
    if len(answer) == 0:
        st.markdown("<p style='fontSize:20px;color:orange'>No results found, please try again with different query</p>", unsafe_allow_html = True)
    else:
        for ans in answer:
            if('b5/b5319e00' in ans['image_url'] ):
                filter_out+=1
                continue
            format_ = ans['image_url'].split(".")[-1]
            Image.MAX_IMAGE_PIXELS = 100000000
            width = 500
            height = 500
            with col_1:
                inner_col_1,inner_col_2 = st.columns([8,92])
                with inner_col_2:
                    st.image(ans['image_url'].replace("/home/ec2-user/SageMaker/","/home/user/app/"))

                    if('max_score_dict_list_sorted' in ans and 'Vector Search' in st.session_state.input_searchType):
                        desc___ = ans['desc'].split(" ")
                        res___ = []
                        for o in ans['max_score_dict_list_sorted']:
                            res___.append(o['doc_token'])
                        final_desc_ = "<p></p><p>"
                        for word_ in desc___:
                            str_=re.sub('[^A-Za-z0-9]+', '', word_).lower()
                            stemmed_word = next(iter(set(stem_(str_))))
                            if(stemmed_word in res___ or str_ in res___):
                                if(stemmed_word in res___):
                                    mod_word = stemmed_word
                                else:
                                    mod_word = str_
                                if(res___.index(mod_word)==0):
                                    final_desc_ +=  "<span style='color:#ffffff;background-color:#8B0001;font-weight:bold'>"+word_+"</span> "
                                elif(res___.index(mod_word)==1):
                                    final_desc_ +=  "<span style='color:#ffffff;background-color:#C34632;font-weight:bold'>"+word_+"</span> "
                                else:
                                    final_desc_ +=  "<span style='color:#ffffff;background-color:#E97452;font-weight:bold'>"+word_+"</span> "
                            else:
                                final_desc_ += word_ + " "
                        
                        final_desc_ += "</p><br>"
                        st.markdown(final_desc_,unsafe_allow_html = True)
                    elif("highlight" in ans and 'Keyword Search' in st.session_state.input_searchType):
                        test_strs = ans["highlight"]
                        tag = "em"
                        res__ = []
                        for test_str in test_strs:
                            start_idx = test_str.find("<" + tag + ">")
                            
                            while start_idx != -1:
                                end_idx = test_str.find("</" + tag + ">", start_idx)
                                if end_idx == -1:
                                    break
                                res__.append(test_str[start_idx+len(tag)+2:end_idx])
                                start_idx = test_str.find("<" + tag + ">", end_idx)

                            
                        desc__ = ans['desc'].split(" ")
                            
                        final_desc = "<p>"

                        for word in desc__:
                            if(re.sub('[^A-Za-z0-9]+', '', word) in res__):
                                final_desc +=  "<span style='color:#e28743;font-weight:bold'>"+word+"</span> "
                            else:
                                final_desc += word + " "
                        
                        final_desc += "</p>"

                        st.markdown(final_desc,unsafe_allow_html = True)
                    else:
                        st.write(ans['desc'])
                    if("sparse" in ans):
                        with st.expander("Expanded document:"):
                            sparse_ = dict(sorted(ans['sparse'].items(), key=lambda item: item[1],reverse=True))
                            filtered_sparse = dict()
                            for key in sparse_:
                                if(sparse_[key]>=1.0):
                                    filtered_sparse[key] = round(sparse_[key], 2)
                            st.write(filtered_sparse)
                    with st.expander("Document Metadata:",expanded = False):
                        st.write(":green[default:]")
                        st.json({"category:":ans['category'],"price":str(ans['price']),"gender_affinity":ans['gender_affinity'],"style":ans['style']},expanded = True)
                        if("rekog" in ans):
                            st.write(":green[enriched:]")
                            st.json(ans['rekog'],expanded = True)
                with inner_col_1:
                    
                    if(st.session_state.input_evaluate == "enabled"):
                        with st.container(border = False):
                            if("relevant" in ans.keys()):
                                if(ans['relevant']==True):
                                    st.write(":white_check_mark:")
                                else:
                                    st.write(":x:")
                        
            i = i+1
    
        with col_3:
            if(index == len(st.session_state.questions)):

                rdn_key = ''.join([random.choice(string.ascii_letters)
                                for _ in range(10)])
                currentValue = "".join(st.session_state.input_searchType)+st.session_state.input_imageUpload+json.dumps(st.session_state.input_weightage)+st.session_state.input_NormType+st.session_state.input_CombineType+str(st.session_state.input_K)+st.session_state.input_sparse+st.session_state.input_reranker+st.session_state.input_is_rewrite_query+st.session_state.input_evaluate+st.session_state.input_image+st.session_state.input_rad_1+st.session_state.input_reranker+st.session_state.input_hybridType+st.session_state.input_manual_filter
                oldValue = "".join(st.session_state.inputs_["searchType"])+st.session_state.inputs_["imageUpload"]+str(st.session_state.inputs_["weightage"])+st.session_state.inputs_["NormType"]+st.session_state.inputs_["CombineType"]+str(st.session_state.inputs_["K"])+st.session_state.inputs_["sparse"]+st.session_state.inputs_["reranker"]+st.session_state.inputs_["is_rewrite_query"]+st.session_state.inputs_["evaluate"]+st.session_state.inputs_["image"]+st.session_state.inputs_["rad_1"]+st.session_state.inputs_["reranker"]+st.session_state.inputs_["hybridType"]+st.session_state.inputs_["manual_filter"]
                
                def on_button_click():
                    if(currentValue!=oldValue):
                        st.session_state.input_text = st.session_state.questions[-1]["question"]
                        st.session_state.answers.pop()
                        st.session_state.questions.pop()
                        
                        handle_input()
                        with placeholder.container():
                            render_all()
                    
                            

                if("currentValue"  in st.session_state):
                    del st.session_state["currentValue"]

                try:
                    del regenerate
                except:
                    pass  

                placeholder__ = st.empty()
                
                placeholder__.button("🔄",key=rdn_key,on_click=on_button_click, help = "This will regenerate the responses with new settings that you entered, Note: To see difference in responses, you should change any of the applicable settings")#,type="primary",use_column_width=True)
        
        if(filter_out > 0):
            placeholder_no_results.text(str(filter_out)+" result(s) removed due to missing or in-appropriate content")    

        
        
#Each answer will have context of the question asked in order to associate the provided feedback with the respective question
def write_chat_message(md, q,index):
    if('body' in md['answer']):
        res = json.loads(md['answer']['body'])
    else:
        res = md['answer']
    st.session_state['session_id'] = "1234"
    chat = st.container()
    with chat:
        render_answer(res,index)
    
def render_all():  
    index = 0
    for (q, a) in zip(st.session_state.questions, st.session_state.answers):
        index = index +1
        ans_ = st.session_state.answers[0]
        write_user_message(q,ans_)
        write_chat_message(a, q,index)

placeholder = st.empty()
with placeholder.container():
  render_all()
  
st.markdown("")