Spaces:
Running
on
T4
Running
on
T4
File size: 41,196 Bytes
2e2dda5 c2a0468 c86ed06 2e2dda5 eb03410 2e2dda5 2034f95 2e2dda5 b5148de 44b28ff b5148de df6a2d0 47287da c86ed06 2e2dda5 c86ed06 2e2dda5 ca368ff 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 72c9086 2e2dda5 72c9086 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 eb03410 2e2dda5 7c3f23a 2e2dda5 eb03410 2e2dda5 ca368ff 2e2dda5 eb03410 2e2dda5 1cab053 7705989 2e2dda5 7705989 2e2dda5 7705989 2e2dda5 7705989 2e2dda5 c86ed06 2e2dda5 c86ed06 2e2dda5 c86ed06 2e2dda5 72c9086 2e2dda5 eb03410 2e2dda5 475a4b0 762f692 475a4b0 24860c1 475a4b0 c86ed06 475a4b0 2e2dda5 475a4b0 2e2dda5 475a4b0 2e2dda5 475a4b0 2e2dda5 475a4b0 2e2dda5 475a4b0 eb03410 58eb742 2e2dda5 58eb742 2e2dda5 58eb742 2e2dda5 58eb742 2e2dda5 58eb742 2e2dda5 58eb742 2e2dda5 58eb742 2e2dda5 58eb742 2e2dda5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 |
import streamlit as st
import math
import io
import uuid
import os
import sys
import boto3
import requests
from requests_aws4auth import AWS4Auth
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/semantic_search")
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG")
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities")
from boto3 import Session
from pathlib import Path
import botocore.session
import subprocess
#import os_index_df_sql
import json
import random
import string
from PIL import Image
import urllib.request
import base64
import shutil
import re
from requests.auth import HTTPBasicAuth
import nltk
try:
nltk.data.find("tokenizers/punkt")
except LookupError:
nltk.download("punkt")
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
import query_rewrite
import amazon_rekognition
from streamlit.components.v1 import html
#from st_click_detector import click_detector
import llm_eval
import all_search_execute
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
st.set_page_config(
page_icon="images/opensearch_mark_default.png"
)
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1])
st.markdown("""
<style>
.block-container {
padding-top: 2.75rem;
padding-bottom: 0rem;
padding-left: 5rem;
padding-right: 5rem;
}
</style>
""", unsafe_allow_html=True)
# st.markdown("""
# <style>
# /* 1. Fix only the inner sidebar user content */
# div[data-testid="stSidebarUserContent"] {
# position: fixed;
# top: 0;
# left: 0;
# height: 100vh;
# overflow-y: auto;
# width: inherit;
# z-index: 999;
# }
# /* 2. Optional: Prevent double scroll bar from outer sidebar (only if needed) */
# div[data-testid="stSidebarContent"] {
# overflow: hidden !important;
# }
# </style>
# """, unsafe_allow_html=True)
ps = PorterStemmer()
st.session_state.REGION = 'us-east-1'
USER_ICON = "images/user.png"
AI_ICON = "images/opensearch-twitter-card.png"
REGENERATE_ICON = "images/regenerate.png"
IMAGE_ICON = "images/Image_Icon.png"
TEXT_ICON = "images/text.png"
s3_bucket_ = "pdf-repo-uploads"
#"pdf-repo-uploads"
# Check if the user ID is already stored in the session state
if 'user_id' in st.session_state:
user_id = st.session_state['user_id']
print(f"User ID: {user_id}")
# If the user ID is not yet stored in the session state, generate a random UUID
# else:
# user_id = str(uuid.uuid4())
# st.session_state['user_id'] = user_id
# dynamodb = boto3.resource('dynamodb')
# table = dynamodb.Table('ml-search')
if 'session_id' not in st.session_state:
st.session_state['session_id'] = ""
if 'input_reranker' not in st.session_state:
st.session_state['input_reranker'] = "None"#"Cross Encoder"
if "chats" not in st.session_state:
st.session_state.chats = [
{
'id': 0,
'question': '',
'answer': ''
}
]
if "questions" not in st.session_state:
st.session_state.questions = []
if "input_mvector_rerank" not in st.session_state:
st.session_state.input_colBert_rerank = False
if "clear_" not in st.session_state:
st.session_state.clear_ = False
if "input_clear_filter" not in st.session_state:
st.session_state.input_clear_filter = False
if "radio_disabled" not in st.session_state:
st.session_state.radio_disabled = True
if "input_rad_1" not in st.session_state:
st.session_state.input_rad_1 = ""
if "input_manual_filter" not in st.session_state:
st.session_state.input_manual_filter = ""
if "input_category" not in st.session_state:
st.session_state.input_category = None
if "input_gender" not in st.session_state:
st.session_state.input_gender = None
# if "input_price" not in st.session_state:
# st.session_state.input_price = (0,0)
if "input_sql_query" not in st.session_state:
st.session_state.input_sql_query = ""
if "input_rewritten_query" not in st.session_state:
st.session_state.input_rewritten_query = ""
if "input_hybridType" not in st.session_state:
st.session_state.input_hybridType = "OpenSearch Hybrid Query"
if "ndcg_increase" not in st.session_state:
st.session_state.ndcg_increase = " ~ "
if "inputs_" not in st.session_state:
st.session_state.inputs_ = {}
if "img_container" not in st.session_state:
st.session_state.img_container = ""
if "input_rekog_directoutput" not in st.session_state:
st.session_state.input_rekog_directoutput = {}
if "input_weightage" not in st.session_state:
st.session_state.input_weightage = {}
if "img_gen" not in st.session_state:
st.session_state.img_gen = []
if "answers" not in st.session_state:
st.session_state.answers = []
if "answers_none_rank" not in st.session_state:
st.session_state.answers_none_rank = []
if "input_text" not in st.session_state:
st.session_state.input_text="black jacket for men"#"black jacket for men under 120 dollars"
if "input_ndcg" not in st.session_state:
st.session_state.input_ndcg=0.0
if "gen_image_str" not in st.session_state:
st.session_state.gen_image_str=""
if "input_NormType" not in st.session_state:
st.session_state.input_NormType = "min_max"
if "input_CombineType" not in st.session_state:
st.session_state.input_CombineType = "arithmetic_mean"
if "input_sparse" not in st.session_state:
st.session_state.input_sparse = "disabled"
if "input_evaluate" not in st.session_state:
st.session_state.input_evaluate = "disabled"
if "input_is_rewrite_query" not in st.session_state:
st.session_state.input_is_rewrite_query = "disabled"
if "input_rekog_label" not in st.session_state:
st.session_state.input_rekog_label = ""
if "input_sparse_filter" not in st.session_state:
st.session_state.input_sparse_filter = 0.5
if "input_modelType" not in st.session_state:
st.session_state.input_modelType = "Titan-Embed-Text-v1"
if "input_weight" not in st.session_state:
st.session_state.input_weight = 0.5
if "image_prompt2" not in st.session_state:
st.session_state.image_prompt2 = ""
if "image_prompt" not in st.session_state:
st.session_state.image_prompt = ""
if "bytes_for_rekog" not in st.session_state:
st.session_state.bytes_for_rekog = ""
if "OpenSearchDomainEndpoint" not in st.session_state:
st.session_state.OpenSearchDomainEndpoint = "search-opensearchservi-shjckef2t7wo-iyv6rajdgxg6jas25aupuxev6i.us-west-2.es.amazonaws.com"
if "max_selections" not in st.session_state:
st.session_state.max_selections = "None"
if "re_ranker" not in st.session_state:
st.session_state.re_ranker = "true"
host = 'https://'+st.session_state.OpenSearchDomainEndpoint+'/'
service = 'es'
#credentials = boto3.Session().get_credentials()
awsauth = awsauth = HTTPBasicAuth('master',st.secrets['ml_search_demo_api_access'])
headers = {"Content-Type": "application/json"}
if "REGION" not in st.session_state:
st.session_state.REGION = ""
if "BEDROCK_MULTIMODAL_MODEL_ID" not in st.session_state:
st.session_state.BEDROCK_MULTIMODAL_MODEL_ID = "p_Qk-ZMBcuw9xT4ly3_B"
if "search_types" not in st.session_state:
st.session_state.search_types = 'Keyword Search,Vector Search,Multimodal Search,NeuralSparse Search',
if "KendraResourcePlanID" not in st.session_state:
st.session_state.KendraResourcePlanID= ""
if "SAGEMAKER_CrossEncoder_MODEL_ID" not in st.session_state:
st.session_state.SAGEMAKER_CrossEncoder_MODEL_ID = "deBS3pYB5VHEj-qVuPHT"
if "SAGEMAKER_SPARSE_MODEL_ID" not in st.session_state:
st.session_state.SAGEMAKER_SPARSE_MODEL_ID = "fkol-ZMBTp0efWqBcO2P"
if "BEDROCK_TEXT_MODEL_ID" not in st.session_state:
st.session_state.BEDROCK_TEXT_MODEL_ID = "usQk-ZMBkiQuoz1QFmXN"
#bytes_for_rekog = ""
bedrock_ = boto3.client('bedrock-runtime',
aws_access_key_id=st.secrets['user_access_key'],
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1')
search_all_type = True
if(search_all_type==True):
search_types = ['Keyword Search',
'Vector Search',
'Multimodal Search',
'NeuralSparse Search',
]
def generate_images(tab,inp_):
#write_top_bar()
seed = random.randint(1, 10)
request = json.dumps(
{
"taskType": "TEXT_IMAGE",
"textToImageParams": {"text": st.session_state.image_prompt},
"imageGenerationConfig": {
"numberOfImages": 3,
"quality": "standard",
"cfgScale": 8.0,
"height": 512,
"width": 512,
"seed": seed,
},
}
)
if(inp_!=st.session_state.image_prompt):
print("call bedrocck")
response = bedrock_.invoke_model(
modelId="amazon.titan-image-generator-v1", body=request
)
response_body = json.loads(response["body"].read())
st.session_state.img_gen = response_body["images"]
gen_images_dir = os.path.join(parent_dirname, "gen_images")
if os.path.exists(gen_images_dir):
shutil.rmtree(gen_images_dir)
os.mkdir(gen_images_dir)
width_ = 200
height_ = 200
index_ = 0
#if(inp_!=st.session_state.image_prompt):
if(len(st.session_state.img_gen)==0 and st.session_state.clear_ == True):
#write_top_bar()
placeholder1 = st.empty()
with tab:
with placeholder1.container():
st.empty()
images_dis = []
for image_ in st.session_state.img_gen:
st.session_state.radio_disabled = False
if(index_==0):
# with tab:
# rad1, rad2,rad3 = st.columns([98,1,1])
# if(st.session_state.input_rad_1 is None):
# rand_ = ""
# else:
# rand_ = st.session_state.input_rad_1
# if(inp_!=st.session_state.image_prompt+rand_):
# with rad1:
# sel_rad_1 = st.radio("Choose one image", ["1","2","3"],index=None, horizontal = True,key = 'input_rad_1')
with tab:
#sel_image = st.radio("", ["1","2","3"],index=None, horizontal = True)
if(st.session_state.img_container!=""):
st.session_state.img_container.empty()
place_ = st.empty()
img1, img2,img3 = place_.columns([30,30,30])
st.session_state.img_container = place_
img_arr = [img1, img2,img3]
base64_image_data = image_
#st.session_state.gen_image_str = base64_image_data
print("perform multimodal search")
Image.MAX_IMAGE_PIXELS = 100000000
filename = st.session_state.image_prompt+"_gen_"+str(index_)
photo = parent_dirname+"/gen_images/"+filename+'.jpg' # I assume you have a way of picking unique filenames
imgdata = base64.b64decode(base64_image_data)
with open(photo, 'wb') as f:
f.write(imgdata)
with Image.open(photo) as image:
file_type = 'jpg'
path = image.filename.rsplit(".", 1)[0]
image.thumbnail((width_, height_))
image.save(parent_dirname+"/gen_images/"+filename+"-resized_display."+file_type)
with img_arr[index_]:
placeholder_ = st.empty()
placeholder_.image(parent_dirname+"/gen_images/"+filename+"-resized_display."+file_type)
index_ = index_ + 1
def handle_input():
if("text" in st.session_state.inputs_):
if(st.session_state.inputs_["text"] != st.session_state.input_text):
st.session_state.input_ndcg=0.0
st.session_state.bytes_for_rekog = ""
print("***")
if(st.session_state.img_doc is not None or (st.session_state.input_rad_1 is not None and st.session_state.input_rad_1!="") ):#and st.session_state.input_searchType == 'Multi-modal Search'):
print("perform multimodal search")
st.session_state.input_imageUpload = 'yes'
if(st.session_state.input_rad_1 is not None and st.session_state.input_rad_1!=""):
num_str = str(int(st.session_state.input_rad_1.strip())-1)
with open(parent_dirname+"/gen_images/"+st.session_state.image_prompt+"_gen_"+num_str+"-resized_display.jpg", "rb") as image_file:
input_image = base64.b64encode(image_file.read()).decode("utf8")
st.session_state.input_image = input_image
if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType):
st.session_state.bytes_for_rekog = Path(parent_dirname+"/gen_images/"+st.session_state.image_prompt+"_gen_"+num_str+".jpg").read_bytes()
else:
Image.MAX_IMAGE_PIXELS = 100000000
width = 2048
height = 2048
uploaded_images = os.path.join(parent_dirname, "uploaded_images")
if not os.path.exists(uploaded_images):
os.mkdir(uploaded_images)
with open(os.path.join(parent_dirname+"/uploaded_images",st.session_state.img_doc.name),"wb") as f:
f.write(st.session_state.img_doc.getbuffer())
photo = parent_dirname+"/uploaded_images/"+st.session_state.img_doc.name
with Image.open(photo) as image:
image.verify()
with Image.open(photo) as image:
width_ = 200
height_ = 200
if image.format.upper() in ["JPEG", "PNG","JPG"]:
path = image.filename.rsplit(".", 1)[0]
org_file_type = st.session_state.img_doc.name.split(".")[1]
image.thumbnail((width, height))
if(org_file_type.upper()=="PNG"):
file_type = "jpg"
image.convert('RGB').save(f"{path}-resized.{file_type}")
else:
file_type = org_file_type
image.save(f"{path}-resized.{file_type}")
image.thumbnail((width_, height_))
image.save(f"{path}-resized_display.{org_file_type}")
with open(photo.split(".")[0]+"-resized."+file_type, "rb") as image_file:
input_image = base64.b64encode(image_file.read()).decode("utf8")
st.session_state.input_image = input_image
if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType):
st.session_state.bytes_for_rekog = Path(parent_dirname+"/uploaded_images/"+st.session_state.img_doc.name).read_bytes()
else:
print("no image uploaded")
st.session_state.input_imageUpload = 'no'
st.session_state.input_image = ''
inputs = {}
if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType):
old_rekog_label = st.session_state.input_rekog_label
st.session_state.input_rekog_label = amazon_rekognition.extract_image_metadata(st.session_state.bytes_for_rekog)
if(st.session_state.input_text == ""):
st.session_state.input_text = st.session_state.input_rekog_label
weightage = {}
st.session_state.weights_ = []
total_weight = 0.0
counter = 0
num_search = len(st.session_state.input_searchType)
any_weight_zero = False
for type in st.session_state.input_searchType:
key_weight = "input_"+type.split(" ")[0]+"-weight"
total_weight = total_weight + st.session_state[key_weight]
if(st.session_state[key_weight]==0):
any_weight_zero = True
print(total_weight)
for key in st.session_state:
if(key.startswith('input_')):
original_key = key.removeprefix('input_')
if('weight' not in key):
inputs[original_key] = st.session_state[key]
else:
if(original_key.split("-")[0] + " Search" in st.session_state.input_searchType):
counter = counter +1
if(total_weight!=100 or any_weight_zero == True):
extra_weight = 100%num_search
if(counter == num_search):
cal_weight = math.trunc(100/num_search)+extra_weight
else:
cal_weight = math.trunc(100/num_search)
st.session_state[key] = cal_weight
weightage[original_key] = cal_weight
st.session_state.weights_.append(cal_weight)
else:
weightage[original_key] = st.session_state[key]
st.session_state.weights_.append(st.session_state[key])
else:
weightage[original_key] = 0.0
st.session_state[key] = 0.0
inputs['weightage']=weightage
st.session_state.input_weightage = weightage
st.session_state.inputs_ = inputs
question_with_id = {
'question': inputs["text"],
'id': len(st.session_state.questions)
}
st.session_state.questions = []
st.session_state.questions.append(question_with_id)
st.session_state.answers = []
if(st.session_state.input_is_sql_query == 'enabled'):
os_index_df_sql.sql_process(st.session_state.input_text)
print(st.session_state.input_sql_query)
else:
st.session_state.input_sql_query = ""
if(st.session_state.input_is_rewrite_query == 'enabled' or (st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType)):
query_rewrite.get_new_query_res(st.session_state.input_text)
else:
st.session_state.input_rewritten_query = ""
ans__ = all_search_execute.handler(inputs, st.session_state['session_id'])
st.session_state.answers.append({
'answer': ans__,
'search_type':inputs['searchType'],
'id': len(st.session_state.questions)
})
st.session_state.answers_none_rank = st.session_state.answers
if(st.session_state.input_evaluate == "enabled"):
llm_eval.eval(st.session_state.questions, st.session_state.answers)
def write_top_bar():
col1, col2,col3,col4 = st.columns([2.5,35,8,7])
with col1:
st.image(TEXT_ICON, use_column_width='always')
with col2:
#st.markdown("")
input = st.text_input( "Ask here",label_visibility = "collapsed",key="input_text",placeholder = "Type your query")
with col3:
play = st.button("Search",on_click=handle_input,key = "play")
with col4:
clear = st.button("Clear")
col5, col6 = st.columns([4.5,95])
with col5:
st.image(IMAGE_ICON, use_column_width='always')
with col6:
with st.expander(':green[Search by using an image]'):
tab2, tab1 = st.tabs(["Upload Image","Generate Image by AI"])
with tab1:
c1,c2 = st.columns([80,20])
with c1:
gen_images=st.text_area("Text2Image:",placeholder = "Enter the text prompt to generate images",height = 68, key = "image_prompt")
with c2:
st.markdown("<div style = 'height:43px'></div>",unsafe_allow_html=True)
st.button("Generate",disabled=False,key = "generate",on_click = generate_images, args=(tab1,"default_img"))
image_select = st.radio("Choose one image", ["Image 1","Image 2","Image 3"],index=None, horizontal = True,key = 'image_select',disabled = st.session_state.radio_disabled)
st.markdown("""
<style>
[role=radiogroup]{
gap: 6rem;
}
</style>
""",unsafe_allow_html=True)
if(st.session_state.image_select is not None and st.session_state.image_select !="" and len(st.session_state.img_gen)!=0):
st.session_state.input_rad_1 = st.session_state.image_select.split(" ")[1]
else:
st.session_state.input_rad_1 = ""
generate_images(tab1,gen_images)
with tab2:
st.session_state.img_doc = st.file_uploader(
"Upload image", accept_multiple_files=False,type = ['png', 'jpg'])
return clear,tab1
clear,tab_ = write_top_bar()
if clear:
st.session_state.questions = []
st.session_state.answers = []
st.session_state.clear_ = True
st.session_state.image_prompt2 = ""
st.session_state.input_rekog_label = ""
st.session_state.radio_disabled = True
if(len(st.session_state.img_gen)!=0):
st.session_state.img_container.empty()
st.session_state.img_gen = []
st.session_state.input_rad_1 = ""
col1, col3, col4 = st.columns([70,18,12])
with col1:
if(st.session_state.max_selections == "" or st.session_state.max_selections == "1"):
st.session_state.max_selections = 1
if(st.session_state.max_selections == "None"):
st.session_state.max_selections = None
search_type = st.multiselect('Select the Search type(s)',
search_types,['Keyword Search'],
max_selections = st.session_state.max_selections,
key = 'input_searchType',
help = "Select the type of Search, adding more than one search type will activate hybrid search"#\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers)"
)
with col3:
st.number_input("No. of docs", min_value=1, max_value=50, value=5, step=5, key='input_K', help=None)
with col4:
st.markdown("<div style='fontSize:14.5px'>Evaluate</div>",unsafe_allow_html=True)
evaluate = st.toggle(' ', key = 'evaluate', disabled = False) #help = "Checking this box will use LLM to evaluate results as relevant and irrelevant. \n\n This option increases the latency")
if(evaluate):
st.session_state.input_evaluate = "enabled"
else:
st.session_state.input_evaluate = "disabled"
if(search_all_type == True or 1==1):
with st.sidebar:
st.page_link("app.py", label=":orange[Home]", icon="🏠")
########################## enable for query_rewrite ########################
rewrite_query = st.checkbox('Auto-apply filters', key = 'query_rewrite', disabled = False, help = "Checking this box will use LLM to rewrite your query. \n\n Here your natural language query is transformed into OpenSearch query with added filters and attributes")
st.multiselect('Fields for "MUST" filter',
('Price','Gender', 'Color', 'Category', 'Style'),['Category'],
key = 'input_must',
)
########################## enable for query_rewrite ########################
####### Filters #########
st.subheader(':blue[Filters]')
def clear_filter():
st.session_state.input_manual_filter="False"
st.session_state.input_category=None
st.session_state.input_gender=None
st.session_state.input_price=(0,0)
handle_input()
filter_place_holder = st.container()
with filter_place_holder:
st.selectbox("Select one Category", ("accessories", "books","floral","furniture","hot_dispensed","jewelry","tools","apparel","cold_dispensed","food_service","groceries","housewares","outdoors","salty_snacks","videos","beauty","electronics","footwear","homedecor","instruments","seasonal"),index = None,key = "input_category")
st.selectbox("Select one Gender", ("male","female"),index = None,key = "input_gender")
st.slider("Select a range of price", 0, 2000, (0, 0),50, key = "input_price")
if(st.session_state.input_category!=None or st.session_state.input_gender!=None or st.session_state.input_price!=(0,0)):
st.session_state.input_manual_filter="True"
else:
st.session_state.input_manual_filter="False"
clear_filter = st.button("Clear Filters",on_click=clear_filter)
####### Filters #########
if('NeuralSparse Search' in st.session_state.search_types):
st.subheader(':blue[Neural Sparse Search]')
sparse_filter = st.slider('Keep only sparse tokens with weight >=', 0.0, 1.0, 0.5,0.1,key = 'input_sparse_filter', help = 'Use this slider to set the minimum weight that the sparse vector token weights should meet, rest are filtered out')
st.session_state.input_is_rewrite_query = 'disabled'
st.session_state.input_is_sql_query = 'disabled'
########################## enable for query_rewrite ########################
if rewrite_query:
st.session_state.input_is_rewrite_query = 'enabled'
st.subheader(':blue[Vector Search]')
mvector_rerank = st.checkbox("Search and Re-rank with Token level vectors",key = 'mvector_rerank',help = "Enabling this option uses 'all-MiniLM-L6-v2' model's token level embeddings to retrieve documents and MaxSim to re-rank documents.\n\n Hugging Face Model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2")
if(mvector_rerank):
st.session_state.input_mvector_rerank = True
else:
st.session_state.input_mvector_rerank = False
st.subheader(':blue[Hybrid Search]')
with st.expander("Set query Weightage:"):
st.number_input("Keyword %", min_value=0, max_value=100, value=100, step=5, key='input_Keyword-weight', help=None)
st.number_input("Vector %", min_value=0, max_value=100, value=0, step=5, key='input_Vector-weight', help=None)
st.number_input("Multimodal %", min_value=0, max_value=100, value=0, step=5, key='input_Multimodal-weight', help=None)
st.number_input("NeuralSparse %", min_value=0, max_value=100, value=0, step=5, key='input_NeuralSparse-weight', help=None)
if(st.session_state.re_ranker == "true"):
st.subheader(':blue[Re-ranking]')
reranker = st.selectbox('Choose a Re-Ranker',
('None','Cohere Rerank'#'Kendra Rescore'
),
key = 'input_reranker',
help = 'Select the Re-Ranker type, select "None" to apply no re-ranking of the results',
args=(st.session_state.questions, st.session_state.answers)
)
def write_user_message(md,ans):
if(len(ans["answer"])>0):
ans = ans["answer"][0]
col1, col2, col3 = st.columns([3,40,20])
with col1:
st.image(USER_ICON, use_column_width='always')
with col2:
st.markdown("<div style='fontSize:15px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>Input Text: </div><div style='fontSize:25px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;font-style: italic;color:#e28743'>"+md['question']+"</div>", unsafe_allow_html = True)
if('query_sparse' in ans):
with st.expander("Expanded Query:"):
query_sparse = dict(sorted(ans['query_sparse'].items(), key=lambda item: item[1],reverse=True))
filtered_query_sparse = dict()
for key in query_sparse:
filtered_query_sparse[key] = round(query_sparse[key], 2)
st.write(filtered_query_sparse)
if(st.session_state.input_is_rewrite_query == "enabled" and st.session_state.input_rewritten_query !=""):
with st.expander("Re-written Query:"):
st.json(st.session_state.input_rewritten_query,expanded = True)
with col3:
st.markdown("<div style='fontSize:15px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>Input Image: </div>", unsafe_allow_html = True)
if(st.session_state.input_imageUpload == 'yes'):
if(st.session_state.input_rad_1 is not None and st.session_state.input_rad_1!=""):
num_str = str(int(st.session_state.input_rad_1.strip())-1)
img_file = parent_dirname+"/gen_images/"+st.session_state.image_prompt+"_gen_"+num_str+"-resized_display.jpg"
else:
img_file = parent_dirname+"/uploaded_images/"+st.session_state.img_doc.name.split(".")[0]+"-resized_display."+st.session_state.img_doc.name.split(".")[1]
st.image(img_file)
if(st.session_state.input_rekog_label !=""):
with st.expander("Enriched Query Metadata:"):
st.markdown('<p>'+json.dumps(st.session_state.input_rekog_directoutput)+'<p>',unsafe_allow_html=True)
else:
st.markdown("<div style='fontSize:15px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>None</div>", unsafe_allow_html = True)
st.markdown('---')
def stem_(sentence):
words = word_tokenize(sentence)
words_stem = []
for w in words:
words_stem.append( ps.stem(w))
return words_stem
def render_answer(answer,index):
column1, column2 = st.columns([6,90])
with column1:
st.image(AI_ICON, use_column_width='always')
with column2:
st.markdown("<div style='fontSize:25px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>Results </div>", unsafe_allow_html = True)
if(st.session_state.input_evaluate == "enabled" and st.session_state.input_ndcg > 0):
span_color = "white"
if("↑" in st.session_state.ndcg_increase):
span_color = "green"
if("↓" in st.session_state.ndcg_increase):
span_color = "red"
st.markdown("<span style='fontSize:20px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 20px;font-family:Courier New;color:#e28743'>Relevance:" +str('%.3f'%(st.session_state.input_ndcg)) + "</span><span style='font-size:30px;font-weight:bold;color:"+span_color+"'>"+st.session_state.ndcg_increase.split("~")[0] +"</span><span style='font-size:15px;font-weight:bold;font-family:Courier New;color:"+span_color+"'> "+st.session_state.ndcg_increase.split("~")[1]+"</span>", unsafe_allow_html = True)
placeholder_no_results = st.empty()
col_1, col_2,col_3 = st.columns([70,10,20])
i = 0
filter_out = 0
if len(answer) == 0:
st.markdown("<p style='fontSize:20px;color:orange'>No results found, please try again with different query</p>", unsafe_allow_html = True)
else:
for ans in answer:
if('b5/b5319e00' in ans['image_url'] ):
filter_out+=1
continue
format_ = ans['image_url'].split(".")[-1]
Image.MAX_IMAGE_PIXELS = 100000000
width = 500
height = 500
with col_1:
inner_col_1,inner_col_2 = st.columns([8,92])
with inner_col_2:
st.image(ans['image_url'].replace("/home/ec2-user/SageMaker/","/home/user/app/"))
if('max_score_dict_list_sorted' in ans and 'Vector Search' in st.session_state.input_searchType):
desc___ = ans['desc'].split(" ")
res___ = []
for o in ans['max_score_dict_list_sorted']:
res___.append(o['doc_token'])
final_desc_ = "<p></p><p>"
for word_ in desc___:
str_=re.sub('[^A-Za-z0-9]+', '', word_).lower()
stemmed_word = next(iter(set(stem_(str_))))
if(stemmed_word in res___ or str_ in res___):
if(stemmed_word in res___):
mod_word = stemmed_word
else:
mod_word = str_
if(res___.index(mod_word)==0):
final_desc_ += "<span style='color:#ffffff;background-color:#8B0001;font-weight:bold'>"+word_+"</span> "
elif(res___.index(mod_word)==1):
final_desc_ += "<span style='color:#ffffff;background-color:#C34632;font-weight:bold'>"+word_+"</span> "
else:
final_desc_ += "<span style='color:#ffffff;background-color:#E97452;font-weight:bold'>"+word_+"</span> "
else:
final_desc_ += word_ + " "
final_desc_ += "</p><br>"
st.markdown(final_desc_,unsafe_allow_html = True)
elif("highlight" in ans and 'Keyword Search' in st.session_state.input_searchType):
test_strs = ans["highlight"]
tag = "em"
res__ = []
for test_str in test_strs:
start_idx = test_str.find("<" + tag + ">")
while start_idx != -1:
end_idx = test_str.find("</" + tag + ">", start_idx)
if end_idx == -1:
break
res__.append(test_str[start_idx+len(tag)+2:end_idx])
start_idx = test_str.find("<" + tag + ">", end_idx)
desc__ = ans['desc'].split(" ")
final_desc = "<p>"
for word in desc__:
if(re.sub('[^A-Za-z0-9]+', '', word) in res__):
final_desc += "<span style='color:#e28743;font-weight:bold'>"+word+"</span> "
else:
final_desc += word + " "
final_desc += "</p>"
st.markdown(final_desc,unsafe_allow_html = True)
else:
st.write(ans['desc'])
if("sparse" in ans):
with st.expander("Expanded document:"):
sparse_ = dict(sorted(ans['sparse'].items(), key=lambda item: item[1],reverse=True))
filtered_sparse = dict()
for key in sparse_:
if(sparse_[key]>=1.0):
filtered_sparse[key] = round(sparse_[key], 2)
st.write(filtered_sparse)
with st.expander("Document Metadata:",expanded = False):
st.write(":green[default:]")
st.json({"category:":ans['category'],"price":str(ans['price']),"gender_affinity":ans['gender_affinity'],"style":ans['style']},expanded = True)
if("rekog" in ans):
st.write(":green[enriched:]")
st.json(ans['rekog'],expanded = True)
with inner_col_1:
if(st.session_state.input_evaluate == "enabled"):
with st.container(border = False):
if("relevant" in ans.keys()):
if(ans['relevant']==True):
st.write(":white_check_mark:")
else:
st.write(":x:")
i = i+1
with col_3:
if(index == len(st.session_state.questions)):
rdn_key = ''.join([random.choice(string.ascii_letters)
for _ in range(10)])
currentValue = "".join(st.session_state.input_searchType)+st.session_state.input_imageUpload+json.dumps(st.session_state.input_weightage)+st.session_state.input_NormType+st.session_state.input_CombineType+str(st.session_state.input_K)+st.session_state.input_sparse+st.session_state.input_reranker+st.session_state.input_is_rewrite_query+st.session_state.input_evaluate+st.session_state.input_image+st.session_state.input_rad_1+st.session_state.input_reranker+st.session_state.input_hybridType+st.session_state.input_manual_filter
oldValue = "".join(st.session_state.inputs_["searchType"])+st.session_state.inputs_["imageUpload"]+str(st.session_state.inputs_["weightage"])+st.session_state.inputs_["NormType"]+st.session_state.inputs_["CombineType"]+str(st.session_state.inputs_["K"])+st.session_state.inputs_["sparse"]+st.session_state.inputs_["reranker"]+st.session_state.inputs_["is_rewrite_query"]+st.session_state.inputs_["evaluate"]+st.session_state.inputs_["image"]+st.session_state.inputs_["rad_1"]+st.session_state.inputs_["reranker"]+st.session_state.inputs_["hybridType"]+st.session_state.inputs_["manual_filter"]
def on_button_click():
if(currentValue!=oldValue):
st.session_state.input_text = st.session_state.questions[-1]["question"]
st.session_state.answers.pop()
st.session_state.questions.pop()
handle_input()
with placeholder.container():
render_all()
if("currentValue" in st.session_state):
del st.session_state["currentValue"]
try:
del regenerate
except:
pass
placeholder__ = st.empty()
placeholder__.button("🔄",key=rdn_key,on_click=on_button_click, help = "This will regenerate the responses with new settings that you entered, Note: To see difference in responses, you should change any of the applicable settings")#,type="primary",use_column_width=True)
if(filter_out > 0):
placeholder_no_results.text(str(filter_out)+" result(s) removed due to missing or in-appropriate content")
#Each answer will have context of the question asked in order to associate the provided feedback with the respective question
def write_chat_message(md, q,index):
if('body' in md['answer']):
res = json.loads(md['answer']['body'])
else:
res = md['answer']
st.session_state['session_id'] = "1234"
chat = st.container()
with chat:
render_answer(res,index)
def render_all():
index = 0
for (q, a) in zip(st.session_state.questions, st.session_state.answers):
index = index +1
ans_ = st.session_state.answers[0]
write_user_message(q,ans_)
write_chat_message(a, q,index)
placeholder = st.empty()
with placeholder.container():
render_all()
st.markdown("")
|