Spaces:
Running
on
T4
Running
on
T4
import boto3 | |
from botocore.exceptions import ClientError | |
import pprint | |
import time | |
import streamlit as st | |
from sentence_transformers import CrossEncoder | |
model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2", max_length=512) | |
kendra_ranking = boto3.client("kendra-ranking",region_name = 'us-east-1') | |
print("Create a rescore execution plan.") | |
# Provide a name for the rescore execution plan | |
name = "MyRescoreExecutionPlan" | |
# Set your required additional capacity units | |
# Don't set capacity units if you don't require more than 1 unit given by default | |
capacity_units = 2 | |
# try: | |
# rescore_execution_plan_response = kendra_ranking.create_rescore_execution_plan( | |
# Name = name, | |
# CapacityUnits = {"RescoreCapacityUnits":capacity_units} | |
# ) | |
# pprint.pprint(rescore_execution_plan_response) | |
# rescore_execution_plan_id = rescore_execution_plan_response["Id"] | |
# print("Wait for Amazon Kendra to create the rescore execution plan.") | |
# while True: | |
# # Get the details of the rescore execution plan, such as the status | |
# rescore_execution_plan_description = kendra_ranking.describe_rescore_execution_plan( | |
# Id = rescore_execution_plan_id | |
# ) | |
# # When status is not CREATING quit. | |
# status = rescore_execution_plan_description["Status"] | |
# print(" Creating rescore execution plan. Status: "+status) | |
# time.sleep(60) | |
# if status != "CREATING": | |
# break | |
# except ClientError as e: | |
# print("%s" % e) | |
# print("Program ends.") | |
def re_rank(self_, rerank_type, search_type, question, answers): | |
print("start") | |
print() | |
ans = [] | |
ids = [] | |
ques_ans = [] | |
query = question[0]['question'] | |
for i in answers[0]['answer']: | |
if(self_ == "search"): | |
ans.append({ | |
"Id": i['id'], | |
"Body": i["desc"], | |
"OriginalScore": i['score'], | |
"Title":i["desc"] | |
}) | |
ids.append(i['id']) | |
ques_ans.append((query,i["desc"])) | |
else: | |
ans.append({'text':i}) | |
ques_ans.append((query,i)) | |
re_ranked = [{}] | |
if(rerank_type == 'Kendra Rescore'): | |
rescore_response = kendra_ranking.rescore( | |
RescoreExecutionPlanId = 'b2a4d4f3-98ff-4e17-8b69-4c61ed7d91eb', | |
SearchQuery = query, | |
Documents = ans | |
) | |
#[{'DocumentId': 'DocId1', 'Score': 2.0}, {'DocumentId': 'DocId2', 'Score': 1.0}] | |
re_ranked[0]['answer']=[] | |
for result in rescore_response["ResultItems"]: | |
pos_ = ids.index(result['DocumentId']) | |
re_ranked[0]['answer'].append(answers[0]['answer'][pos_]) | |
re_ranked[0]['search_type']=search_type, | |
re_ranked[0]['id'] = len(question) | |
#st.session_state.answers_none_rank = st.session_state.answers | |
return re_ranked | |
# if(rerank_type == 'None'): | |
# st.session_state.answers = st.session_state.answers_none_rank | |
if(rerank_type == 'Cross Encoder'): | |
scores = model.predict( | |
ques_ans | |
) | |
print("scores") | |
print(scores) | |
index__ = 0 | |
for i in ans: | |
i['new_score'] = scores[index__] | |
index__ = index__+1 | |
ans_sorted = sorted(ans, key=lambda d: d['new_score'],reverse=True) | |
def retreive_only_text(item): | |
return item['text'] | |
if(self_ == 'rag'): | |
return list(map(retreive_only_text, ans_sorted)) | |
re_ranked[0]['answer']=[] | |
for j in ans_sorted: | |
pos_ = ids.index(j['Id']) | |
re_ranked[0]['answer'].append(answers[0]['answer'][pos_]) | |
re_ranked[0]['search_type']= search_type, | |
re_ranked[0]['id'] = len(question) | |
return re_ranked | |
#return st.session_state.answers | |