OpenSearch-AI / RAG /colpali.py
prasadnu's picture
colpali fix
10cea74
import json
import random
import pprint
import os
from io import BytesIO
import glob
from pathlib import Path
from typing import Optional, cast
import numpy as np
#from datasets import load_dataset
import json
import boto3
from opensearchpy import OpenSearch, RequestsHttpConnection, AWSV4SignerAuth
from requests.auth import HTTPBasicAuth
from requests_aws4auth import AWS4Auth
import matplotlib.pyplot as plt
import requests
import boto3
import streamlit as st
import base64
from colpali_engine.interpretability import (
get_similarity_maps_from_embeddings,
plot_all_similarity_maps,
plot_similarity_map,
)
import torch
# from colpali_engine.models import ColPali, ColPaliProcessor
# from colpali_engine.utils.torch_utils import get_torch_device
from PIL import Image
import utilities.invoke_models as invoke_models
model_name = (
"vidore/colpali-v1.3"
)
# colpali_model = ColPali.from_pretrained(
# model_name,
# torch_dtype=torch.bfloat16,
# device_map="cuda:0", # Use "cuda:0" for GPU, "cpu" for CPU, or "mps" for Apple Silicon
# ).eval()
# colpali_processor = ColPaliProcessor.from_pretrained(
# model_name
# )
awsauth = HTTPBasicAuth('master',st.secrets['ml_search_demo_api_access'])
headers = {"Content-Type": "application/json"}
aos_client = OpenSearch(
hosts = [{'host': 'search-opensearchservi-shjckef2t7wo-iyv6rajdgxg6jas25aupuxev6i.us-west-2.es.amazonaws.com', 'port': 443}],
http_auth = awsauth,
use_ssl = True,
verify_certs = True,
connection_class = RequestsHttpConnection,
pool_maxsize = 20
)
region_endpoint = "us-east-1"
# Your SageMaker endpoint name
endpoint_name = "colpali-endpoint"
# Create a SageMaker runtime client
runtime = boto3.client("sagemaker-runtime",aws_access_key_id=st.secrets['user_access_key'],
aws_secret_access_key=st.secrets['user_secret_key'], region_name=region_endpoint)
# Prepare your payload (e.g., text-only input)
if 'top_img' not in st.session_state:
st.session_state['top_img'] = ""
if 'query_token_vectors' not in st.session_state:
st.session_state['query_token_vectors'] = ""
if 'query_tokens' not in st.session_state:
st.session_state['query_tokens'] = ""
def call_nova(
model,
messages,
system_message="",
streaming=False,
max_tokens=512,
temp=0.0001,
top_p=0.99,
top_k=20,
tools=None,
verbose=False,
):
client = boto3.client('bedrock-runtime',
aws_access_key_id=st.secrets['user_access_key'],
aws_secret_access_key=st.secrets['user_secret_key'], region_name = region_endpoint)
system_list = [{"text": system_message}]
inf_params = {
"max_new_tokens": max_tokens,
"top_p": top_p,
"top_k": top_k,
"temperature": temp,
}
request_body = {
"messages": messages,
"system": system_list,
"inferenceConfig": inf_params,
}
if tools is not None:
tool_config = []
for tool in tools:
tool_config.append({"toolSpec": tool})
request_body["toolConfig"] = {"tools": tool_config}
if verbose:
print("Request Body", request_body)
if not streaming:
response = client.invoke_model(modelId=model, body=json.dumps(request_body))
model_response = json.loads(response["body"].read())
return model_response, model_response["output"]["message"]["content"][0]["text"]
else:
response = client.invoke_model_with_response_stream(
modelId=model, body=json.dumps(request_body)
)
return response["body"]
def get_base64_encoded_value(media_path):
with open(media_path, "rb") as media_file:
binary_data = media_file.read()
base_64_encoded_data = base64.b64encode(binary_data)
base64_string = base_64_encoded_data.decode("utf-8")
return base64_string
def generate_ans(top_result,query):
print(query)
system_message = "given an image of a PDF page, answer the question. Be accurate to the question. If you don't find the answer in the page, please say, I don't know"
messages = [
{
"role": "user",
"content": [
{
"image": {
"format": "jpeg",
"source": {
"bytes": get_base64_encoded_value(
top_result
)
},
}
},
{
"text": query#"what is the proportion of female new hires 2021-2023?"
},
],
}
]
model_response, content_text = call_nova(
"amazon.nova-pro-v1:0", messages, system_message=system_message, max_tokens=300
)
print(content_text)
return content_text
def img_highlight(img,batch_queries,query_tokens):
img_name = os.path.basename(img) # e.g., "my_image.png"
# Construct the search pattern
search_pattern = f"/home/user/app/similarity_maps/similarity_map_{img_name}_token_*"
# Search for matching files
matching_files = glob.glob(search_pattern)
# Check if any match exists
map_images = []
if matching_files:
print("✅ Matching similarity map exists:")
for file_path in matching_files:
print(f" - {file_path}")
map_images.append({'file':file_path})
return map_images
# Reference from : https://github.com/tonywu71/colpali-cookbooks/blob/main/examples/gen_colpali_similarity_maps.ipynb
with open(img, "rb") as f:
img_b64 = base64.b64encode(f.read()).decode("utf-8")
# Construct payload with only the image
payload = {
"images": [img_b64]
}
# Send to endpoint
response = runtime.invoke_endpoint(
EndpointName=endpoint_name, # your endpoint name
ContentType="application/json",
Body=json.dumps(payload)
)
# Read response
img_colpali_res = (json.loads(response["Body"].read().decode()))
# Convert outputs to tensors
image_embeddings = torch.tensor(img_colpali_res["image_embeddings"][0]) # shape: [B, T, D] or [T, D]
query_embeddings = torch.tensor(batch_queries) # shape: [B, D]
# Ensure you're accessing the full 1D mask vector, not a single value
image_mask_list = img_colpali_res["image_mask"]
if isinstance(image_mask_list[0], list):
# Correct: list of lists
image_mask = torch.tensor(image_mask_list[0]).bool()
else:
# Edge case: already flattened
image_mask = torch.tensor(image_mask_list).bool()
print("Valid patch count:", image_mask.sum().item()) # shape: [B, T] or [T]
# Ensure 2D query_embeddings
if query_embeddings.dim() == 2:
query_embeddings = query_embeddings.unsqueeze(0)
# Ensure image_embeddings and image_mask are batched
if image_embeddings.dim() == 2:
image_embeddings = image_embeddings.unsqueeze(0) # [1, T, D]
if image_mask.dim() == 1:
image_mask = image_mask.unsqueeze(0)
print("query_embeddings shape:", query_embeddings.shape)
print("image_embeddings shape:", image_embeddings.shape)
print("image_mask shape:", image_mask.shape)
# Get the number of image patches
image = Image.open(img)
n_patches = (img_colpali_res["patch_shape"]['height'],img_colpali_res["patch_shape"]['width'])
print(f"Number of image patches: {n_patches}")
# # Generate the similarity maps
batched_similarity_maps = get_similarity_maps_from_embeddings(
image_embeddings=image_embeddings,
query_embeddings=query_embeddings,
n_patches=n_patches,
image_mask = image_mask
)
# # Get the similarity map for our (only) input image
similarity_maps = batched_similarity_maps[0] # (query_length, n_patches_x, n_patches_y)
query_tokens_from_model = query_tokens[0]['tokens']
plots = plot_all_similarity_maps(
image=image,
query_tokens=query_tokens_from_model,
similarity_maps=similarity_maps,
figsize=(8, 8),
show_colorbar=False,
add_title=True,
)
map_images = []
for idx, (fig, ax) in enumerate(plots):
if(idx<3):
continue
savepath = "/home/user/app/similarity_maps/similarity_map_"+(img.split("/"))[-1]+"_token_"+str(idx)+"_"+query_tokens_from_model[idx]+".png"
fig.savefig(savepath, bbox_inches="tight")
map_images.append({'file':savepath})
print(f"Similarity map for token `{query_tokens_from_model[idx]}` saved at `{savepath}`")
plt.close("all")
return map_images
def colpali_search_rerank(query):
if(st.session_state.show_columns == True):
print("show columns activated------------------------")
st.session_state.maxSimImages = img_highlight(st.session_state.top_img, st.session_state.query_token_vectors, st.session_state.query_tokens)
st.session_state.show_columns = False
return_val = {'text':st.session_state.answers_[0]['answer'],'source':st.session_state.answers_[0]['source'],'image':st.session_state.maxSimImages,'table':[]}
st.session_state.input_query = st.session_state.questions_[-1]["question"]
st.session_state.answers_.pop()
st.session_state.questions_.pop()
return return_val
# Convert to JSON string
payload = {
"queries": [query]
}
body = json.dumps(payload)
# Call the endpoint
response = runtime.invoke_endpoint(
EndpointName=endpoint_name,
ContentType="application/json",
Body=body
)
# Read and print the response
result = json.loads(response["Body"].read().decode())
#print(len(result['query_embeddings'][0]))
final_docs_sorted_20 = []
for i in result['query_embeddings']:
batch_embeddings = i
a = np.array(batch_embeddings)
vec = a.mean(axis=0)
#print(vec)
hits = []
#for v in batch_embeddings:
query_ = {
"size": 200,
"query": {
"nested": {
"path": "page_sub_vectors",
"query": {
"knn": {
"page_sub_vectors.page_sub_vector": {
"vector": vec.tolist(),
"k": 200
}
}
}
}
}
}
response = aos_client.search(
body = query_,
index = 'colpali-vs'
)
#print(response)
query_token_vectors = batch_embeddings
final_docs = []
hits += response['hits']['hits']
#print(len(hits))
for ind,j in enumerate(hits):
max_score_dict_list = []
doc={"id":j["_id"],"score":j["_score"],"image":j["_source"]["image"]}
with_s = j['_source']['page_sub_vectors']
add_score = 0
for index,i in enumerate(query_token_vectors):
query_token_vector = np.array(i)
scores = []
for m in with_s:
doc_token_vector = np.array(m['page_sub_vector'])
score = np.dot(query_token_vector,doc_token_vector)
scores.append(score)
scores.sort(reverse=True)
max_score = scores[0]
add_score+=max_score
doc["total_score"] = add_score
final_docs.append(doc)
final_docs_sorted = sorted(final_docs, key=lambda d: d['total_score'], reverse=True)
final_docs_sorted_20.append(final_docs_sorted[:20])
img = "/home/user/app/vs/"+final_docs_sorted_20[0][0]['image']
ans = generate_ans(img,query)
images_highlighted = [{'file':img}]
st.session_state.top_img = img
st.session_state.query_token_vectors = query_token_vectors
st.session_state.query_tokens = result['query_tokens']
return {'text':ans,'source':img,'image':images_highlighted,'table':[]}#[{'file':img}]