OpenSearch-AI / pages /Semantic_Search.py
prasadnu's picture
mvectors
3980860
import streamlit as st
import math
import io
import uuid
import os
import sys
import boto3
import requests
from requests_aws4auth import AWS4Auth
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/semantic_search")
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/RAG")
sys.path.insert(1, "/".join(os.path.realpath(__file__).split("/")[0:-2])+"/utilities")
from boto3 import Session
from pathlib import Path
import botocore.session
import subprocess
#import os_index_df_sql
import json
import random
import string
from PIL import Image
import urllib.request
import base64
import shutil
import re
from requests.auth import HTTPBasicAuth
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
import query_rewrite
import amazon_rekognition
from streamlit.components.v1 import html
#from st_click_detector import click_detector
import llm_eval
import all_search_execute
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
st.set_page_config(
page_icon="images/opensearch_mark_default.png"
)
parent_dirname = "/".join((os.path.dirname(__file__)).split("/")[0:-1])
st.markdown("""
<style>
.block-container {
padding-top: 2.75rem;
padding-bottom: 0rem;
padding-left: 5rem;
padding-right: 5rem;
}
</style>
""", unsafe_allow_html=True)
# st.markdown("""
# <style>
# /* 1. Fix only the inner sidebar user content */
# div[data-testid="stSidebarUserContent"] {
# position: fixed;
# top: 0;
# left: 0;
# height: 100vh;
# overflow-y: auto;
# width: inherit;
# z-index: 999;
# }
# /* 2. Optional: Prevent double scroll bar from outer sidebar (only if needed) */
# div[data-testid="stSidebarContent"] {
# overflow: hidden !important;
# }
# </style>
# """, unsafe_allow_html=True)
ps = PorterStemmer()
st.session_state.REGION = 'us-east-1'
USER_ICON = "images/user.png"
AI_ICON = "images/opensearch-twitter-card.png"
REGENERATE_ICON = "images/regenerate.png"
IMAGE_ICON = "images/Image_Icon.png"
TEXT_ICON = "images/text.png"
s3_bucket_ = "pdf-repo-uploads"
#"pdf-repo-uploads"
# Check if the user ID is already stored in the session state
if 'user_id' in st.session_state:
user_id = st.session_state['user_id']
print(f"User ID: {user_id}")
# If the user ID is not yet stored in the session state, generate a random UUID
# else:
# user_id = str(uuid.uuid4())
# st.session_state['user_id'] = user_id
# dynamodb = boto3.resource('dynamodb')
# table = dynamodb.Table('ml-search')
if 'session_id' not in st.session_state:
st.session_state['session_id'] = ""
if 'input_reranker' not in st.session_state:
st.session_state['input_reranker'] = "None"#"Cross Encoder"
if "chats" not in st.session_state:
st.session_state.chats = [
{
'id': 0,
'question': '',
'answer': ''
}
]
if "questions" not in st.session_state:
st.session_state.questions = []
if "input_mvector_rerank" not in st.session_state:
st.session_state.input_colBert_rerank = False
if "clear_" not in st.session_state:
st.session_state.clear_ = False
if "input_clear_filter" not in st.session_state:
st.session_state.input_clear_filter = False
if "radio_disabled" not in st.session_state:
st.session_state.radio_disabled = True
if "input_rad_1" not in st.session_state:
st.session_state.input_rad_1 = ""
if "input_manual_filter" not in st.session_state:
st.session_state.input_manual_filter = ""
if "input_category" not in st.session_state:
st.session_state.input_category = None
if "input_gender" not in st.session_state:
st.session_state.input_gender = None
# if "input_price" not in st.session_state:
# st.session_state.input_price = (0,0)
if "input_sql_query" not in st.session_state:
st.session_state.input_sql_query = ""
if "input_rewritten_query" not in st.session_state:
st.session_state.input_rewritten_query = ""
if "input_hybridType" not in st.session_state:
st.session_state.input_hybridType = "OpenSearch Hybrid Query"
if "ndcg_increase" not in st.session_state:
st.session_state.ndcg_increase = " ~ "
if "inputs_" not in st.session_state:
st.session_state.inputs_ = {}
if "img_container" not in st.session_state:
st.session_state.img_container = ""
if "input_rekog_directoutput" not in st.session_state:
st.session_state.input_rekog_directoutput = {}
if "input_weightage" not in st.session_state:
st.session_state.input_weightage = {}
if "img_gen" not in st.session_state:
st.session_state.img_gen = []
if "answers" not in st.session_state:
st.session_state.answers = []
if "answers_none_rank" not in st.session_state:
st.session_state.answers_none_rank = []
if "input_text" not in st.session_state:
st.session_state.input_text="black jacket for men"#"black jacket for men under 120 dollars"
if "input_ndcg" not in st.session_state:
st.session_state.input_ndcg=0.0
if "gen_image_str" not in st.session_state:
st.session_state.gen_image_str=""
if "input_NormType" not in st.session_state:
st.session_state.input_NormType = "min_max"
if "input_CombineType" not in st.session_state:
st.session_state.input_CombineType = "arithmetic_mean"
if "input_sparse" not in st.session_state:
st.session_state.input_sparse = "disabled"
if "input_evaluate" not in st.session_state:
st.session_state.input_evaluate = "disabled"
if "input_is_rewrite_query" not in st.session_state:
st.session_state.input_is_rewrite_query = "disabled"
if "input_rekog_label" not in st.session_state:
st.session_state.input_rekog_label = ""
if "input_sparse_filter" not in st.session_state:
st.session_state.input_sparse_filter = 0.5
if "input_modelType" not in st.session_state:
st.session_state.input_modelType = "Titan-Embed-Text-v1"
if "input_weight" not in st.session_state:
st.session_state.input_weight = 0.5
if "image_prompt2" not in st.session_state:
st.session_state.image_prompt2 = ""
if "image_prompt" not in st.session_state:
st.session_state.image_prompt = ""
if "bytes_for_rekog" not in st.session_state:
st.session_state.bytes_for_rekog = ""
if "OpenSearchDomainEndpoint" not in st.session_state:
st.session_state.OpenSearchDomainEndpoint = "search-opensearchservi-shjckef2t7wo-iyv6rajdgxg6jas25aupuxev6i.us-west-2.es.amazonaws.com"
if "max_selections" not in st.session_state:
st.session_state.max_selections = "None"
if "re_ranker" not in st.session_state:
st.session_state.re_ranker = "true"
host = 'https://'+st.session_state.OpenSearchDomainEndpoint+'/'
service = 'es'
#credentials = boto3.Session().get_credentials()
awsauth = awsauth = HTTPBasicAuth('master',st.secrets['ml_search_demo_api_access'])
headers = {"Content-Type": "application/json"}
if "REGION" not in st.session_state:
st.session_state.REGION = ""
if "BEDROCK_MULTIMODAL_MODEL_ID" not in st.session_state:
st.session_state.BEDROCK_MULTIMODAL_MODEL_ID = "p_Qk-ZMBcuw9xT4ly3_B"
if "search_types" not in st.session_state:
st.session_state.search_types = 'Keyword Search,Vector Search,Multimodal Search,NeuralSparse Search',
if "KendraResourcePlanID" not in st.session_state:
st.session_state.KendraResourcePlanID= ""
if "SAGEMAKER_CrossEncoder_MODEL_ID" not in st.session_state:
st.session_state.SAGEMAKER_CrossEncoder_MODEL_ID = "deBS3pYB5VHEj-qVuPHT"
if "SAGEMAKER_SPARSE_MODEL_ID" not in st.session_state:
st.session_state.SAGEMAKER_SPARSE_MODEL_ID = "fkol-ZMBTp0efWqBcO2P"
if "BEDROCK_TEXT_MODEL_ID" not in st.session_state:
st.session_state.BEDROCK_TEXT_MODEL_ID = "usQk-ZMBkiQuoz1QFmXN"
#bytes_for_rekog = ""
bedrock_ = boto3.client('bedrock-runtime',
aws_access_key_id=st.secrets['user_access_key'],
aws_secret_access_key=st.secrets['user_secret_key'], region_name = 'us-east-1')
search_all_type = True
if(search_all_type==True):
search_types = ['Keyword Search',
'Vector Search',
'Multimodal Search',
'NeuralSparse Search',
]
def generate_images(tab,inp_):
#write_top_bar()
seed = random.randint(1, 10)
request = json.dumps(
{
"taskType": "TEXT_IMAGE",
"textToImageParams": {"text": st.session_state.image_prompt},
"imageGenerationConfig": {
"numberOfImages": 3,
"quality": "standard",
"cfgScale": 8.0,
"height": 512,
"width": 512,
"seed": seed,
},
}
)
if(inp_!=st.session_state.image_prompt):
print("call bedrocck")
response = bedrock_.invoke_model(
modelId="amazon.titan-image-generator-v1", body=request
)
response_body = json.loads(response["body"].read())
st.session_state.img_gen = response_body["images"]
gen_images_dir = os.path.join(parent_dirname, "gen_images")
if os.path.exists(gen_images_dir):
shutil.rmtree(gen_images_dir)
os.mkdir(gen_images_dir)
width_ = 200
height_ = 200
index_ = 0
#if(inp_!=st.session_state.image_prompt):
if(len(st.session_state.img_gen)==0 and st.session_state.clear_ == True):
#write_top_bar()
placeholder1 = st.empty()
with tab:
with placeholder1.container():
st.empty()
images_dis = []
for image_ in st.session_state.img_gen:
st.session_state.radio_disabled = False
if(index_==0):
# with tab:
# rad1, rad2,rad3 = st.columns([98,1,1])
# if(st.session_state.input_rad_1 is None):
# rand_ = ""
# else:
# rand_ = st.session_state.input_rad_1
# if(inp_!=st.session_state.image_prompt+rand_):
# with rad1:
# sel_rad_1 = st.radio("Choose one image", ["1","2","3"],index=None, horizontal = True,key = 'input_rad_1')
with tab:
#sel_image = st.radio("", ["1","2","3"],index=None, horizontal = True)
if(st.session_state.img_container!=""):
st.session_state.img_container.empty()
place_ = st.empty()
img1, img2,img3 = place_.columns([30,30,30])
st.session_state.img_container = place_
img_arr = [img1, img2,img3]
base64_image_data = image_
#st.session_state.gen_image_str = base64_image_data
print("perform multimodal search")
Image.MAX_IMAGE_PIXELS = 100000000
filename = st.session_state.image_prompt+"_gen_"+str(index_)
photo = parent_dirname+"/gen_images/"+filename+'.jpg' # I assume you have a way of picking unique filenames
imgdata = base64.b64decode(base64_image_data)
with open(photo, 'wb') as f:
f.write(imgdata)
with Image.open(photo) as image:
file_type = 'jpg'
path = image.filename.rsplit(".", 1)[0]
image.thumbnail((width_, height_))
image.save(parent_dirname+"/gen_images/"+filename+"-resized_display."+file_type)
with img_arr[index_]:
placeholder_ = st.empty()
placeholder_.image(parent_dirname+"/gen_images/"+filename+"-resized_display."+file_type)
index_ = index_ + 1
def handle_input():
if("text" in st.session_state.inputs_):
if(st.session_state.inputs_["text"] != st.session_state.input_text):
st.session_state.input_ndcg=0.0
st.session_state.bytes_for_rekog = ""
print("***")
if(st.session_state.img_doc is not None or (st.session_state.input_rad_1 is not None and st.session_state.input_rad_1!="") ):#and st.session_state.input_searchType == 'Multi-modal Search'):
print("perform multimodal search")
st.session_state.input_imageUpload = 'yes'
if(st.session_state.input_rad_1 is not None and st.session_state.input_rad_1!=""):
num_str = str(int(st.session_state.input_rad_1.strip())-1)
with open(parent_dirname+"/gen_images/"+st.session_state.image_prompt+"_gen_"+num_str+"-resized_display.jpg", "rb") as image_file:
input_image = base64.b64encode(image_file.read()).decode("utf8")
st.session_state.input_image = input_image
if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType):
st.session_state.bytes_for_rekog = Path(parent_dirname+"/gen_images/"+st.session_state.image_prompt+"_gen_"+num_str+".jpg").read_bytes()
else:
Image.MAX_IMAGE_PIXELS = 100000000
width = 2048
height = 2048
uploaded_images = os.path.join(parent_dirname, "uploaded_images")
if not os.path.exists(uploaded_images):
os.mkdir(uploaded_images)
with open(os.path.join(parent_dirname+"/uploaded_images",st.session_state.img_doc.name),"wb") as f:
f.write(st.session_state.img_doc.getbuffer())
photo = parent_dirname+"/uploaded_images/"+st.session_state.img_doc.name
with Image.open(photo) as image:
image.verify()
with Image.open(photo) as image:
width_ = 200
height_ = 200
if image.format.upper() in ["JPEG", "PNG","JPG"]:
path = image.filename.rsplit(".", 1)[0]
org_file_type = st.session_state.img_doc.name.split(".")[1]
image.thumbnail((width, height))
if(org_file_type.upper()=="PNG"):
file_type = "jpg"
image.convert('RGB').save(f"{path}-resized.{file_type}")
else:
file_type = org_file_type
image.save(f"{path}-resized.{file_type}")
image.thumbnail((width_, height_))
image.save(f"{path}-resized_display.{org_file_type}")
with open(photo.split(".")[0]+"-resized."+file_type, "rb") as image_file:
input_image = base64.b64encode(image_file.read()).decode("utf8")
st.session_state.input_image = input_image
if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType):
st.session_state.bytes_for_rekog = Path(parent_dirname+"/uploaded_images/"+st.session_state.img_doc.name).read_bytes()
else:
print("no image uploaded")
st.session_state.input_imageUpload = 'no'
st.session_state.input_image = ''
inputs = {}
if(st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType):
old_rekog_label = st.session_state.input_rekog_label
st.session_state.input_rekog_label = amazon_rekognition.extract_image_metadata(st.session_state.bytes_for_rekog)
if(st.session_state.input_text == ""):
st.session_state.input_text = st.session_state.input_rekog_label
weightage = {}
st.session_state.weights_ = []
total_weight = 0.0
counter = 0
num_search = len(st.session_state.input_searchType)
any_weight_zero = False
for type in st.session_state.input_searchType:
key_weight = "input_"+type.split(" ")[0]+"-weight"
total_weight = total_weight + st.session_state[key_weight]
if(st.session_state[key_weight]==0):
any_weight_zero = True
print(total_weight)
for key in st.session_state:
if(key.startswith('input_')):
original_key = key.removeprefix('input_')
if('weight' not in key):
inputs[original_key] = st.session_state[key]
else:
if(original_key.split("-")[0] + " Search" in st.session_state.input_searchType):
counter = counter +1
if(total_weight!=100 or any_weight_zero == True):
extra_weight = 100%num_search
if(counter == num_search):
cal_weight = math.trunc(100/num_search)+extra_weight
else:
cal_weight = math.trunc(100/num_search)
st.session_state[key] = cal_weight
weightage[original_key] = cal_weight
st.session_state.weights_.append(cal_weight)
else:
weightage[original_key] = st.session_state[key]
st.session_state.weights_.append(st.session_state[key])
else:
weightage[original_key] = 0.0
st.session_state[key] = 0.0
inputs['weightage']=weightage
st.session_state.input_weightage = weightage
st.session_state.inputs_ = inputs
question_with_id = {
'question': inputs["text"],
'id': len(st.session_state.questions)
}
st.session_state.questions = []
st.session_state.questions.append(question_with_id)
st.session_state.answers = []
if(st.session_state.input_is_sql_query == 'enabled'):
os_index_df_sql.sql_process(st.session_state.input_text)
print(st.session_state.input_sql_query)
else:
st.session_state.input_sql_query = ""
if(st.session_state.input_is_rewrite_query == 'enabled' or (st.session_state.input_imageUpload == 'yes' and 'Keyword Search' in st.session_state.input_searchType)):
query_rewrite.get_new_query_res(st.session_state.input_text)
else:
st.session_state.input_rewritten_query = ""
ans__ = all_search_execute.handler(inputs, st.session_state['session_id'])
st.session_state.answers.append({
'answer': ans__,
'search_type':inputs['searchType'],
'id': len(st.session_state.questions)
})
st.session_state.answers_none_rank = st.session_state.answers
if(st.session_state.input_evaluate == "enabled"):
llm_eval.eval(st.session_state.questions, st.session_state.answers)
def write_top_bar():
col1, col2,col3,col4 = st.columns([2.5,35,8,7])
with col1:
st.image(TEXT_ICON, use_column_width='always')
with col2:
#st.markdown("")
input = st.text_input( "Ask here",label_visibility = "collapsed",key="input_text",placeholder = "Type your query")
with col3:
play = st.button("Search",on_click=handle_input,key = "play")
with col4:
clear = st.button("Clear")
col5, col6 = st.columns([4.5,95])
with col5:
st.image(IMAGE_ICON, use_column_width='always')
with col6:
with st.expander(':green[Search by using an image]'):
tab2, tab1 = st.tabs(["Upload Image","Generate Image by AI"])
with tab1:
c1,c2 = st.columns([80,20])
with c1:
gen_images=st.text_area("Text2Image:",placeholder = "Enter the text prompt to generate images",height = 68, key = "image_prompt")
with c2:
st.markdown("<div style = 'height:43px'></div>",unsafe_allow_html=True)
st.button("Generate",disabled=False,key = "generate",on_click = generate_images, args=(tab1,"default_img"))
image_select = st.radio("Choose one image", ["Image 1","Image 2","Image 3"],index=None, horizontal = True,key = 'image_select',disabled = st.session_state.radio_disabled)
st.markdown("""
<style>
[role=radiogroup]{
gap: 6rem;
}
</style>
""",unsafe_allow_html=True)
if(st.session_state.image_select is not None and st.session_state.image_select !="" and len(st.session_state.img_gen)!=0):
st.session_state.input_rad_1 = st.session_state.image_select.split(" ")[1]
else:
st.session_state.input_rad_1 = ""
generate_images(tab1,gen_images)
with tab2:
st.session_state.img_doc = st.file_uploader(
"Upload image", accept_multiple_files=False,type = ['png', 'jpg'])
return clear,tab1
clear,tab_ = write_top_bar()
if clear:
st.session_state.questions = []
st.session_state.answers = []
st.session_state.clear_ = True
st.session_state.image_prompt2 = ""
st.session_state.input_rekog_label = ""
st.session_state.radio_disabled = True
if(len(st.session_state.img_gen)!=0):
st.session_state.img_container.empty()
st.session_state.img_gen = []
st.session_state.input_rad_1 = ""
col1, col3, col4 = st.columns([70,18,12])
with col1:
if(st.session_state.max_selections == "" or st.session_state.max_selections == "1"):
st.session_state.max_selections = 1
if(st.session_state.max_selections == "None"):
st.session_state.max_selections = None
search_type = st.multiselect('Select the Search type(s)',
search_types,['Keyword Search'],
max_selections = st.session_state.max_selections,
key = 'input_searchType',
help = "Select the type of Search, adding more than one search type will activate hybrid search"#\n1. Conversational Search (Recommended) - This will include both the OpenSearch and LLM in the retrieval pipeline \n (note: This will put opensearch response as context to LLM to answer) \n2. OpenSearch vector search - This will put only OpenSearch's vector search in the pipeline, \n(Warning: this will lead to unformatted results )\n3. LLM Text Generation - This will include only LLM in the pipeline, \n(Warning: This will give hallucinated and out of context answers)"
)
with col3:
st.number_input("No. of docs", min_value=1, max_value=50, value=5, step=5, key='input_K', help=None)
with col4:
st.markdown("<div style='fontSize:14.5px'>Evaluate</div>",unsafe_allow_html=True)
evaluate = st.toggle(' ', key = 'evaluate', disabled = False) #help = "Checking this box will use LLM to evaluate results as relevant and irrelevant. \n\n This option increases the latency")
if(evaluate):
st.session_state.input_evaluate = "enabled"
else:
st.session_state.input_evaluate = "disabled"
if(search_all_type == True or 1==1):
with st.sidebar:
st.page_link("app.py", label=":orange[Home]", icon="🏠")
########################## enable for query_rewrite ########################
rewrite_query = st.checkbox('Auto-apply filters', key = 'query_rewrite', disabled = False, help = "Checking this box will use LLM to rewrite your query. \n\n Here your natural language query is transformed into OpenSearch query with added filters and attributes")
st.multiselect('Fields for "MUST" filter',
('Price','Gender', 'Color', 'Category', 'Style'),['Category'],
key = 'input_must',
)
########################## enable for query_rewrite ########################
####### Filters #########
st.subheader(':blue[Filters]')
def clear_filter():
st.session_state.input_manual_filter="False"
st.session_state.input_category=None
st.session_state.input_gender=None
st.session_state.input_price=(0,0)
handle_input()
filter_place_holder = st.container()
with filter_place_holder:
st.selectbox("Select one Category", ("accessories", "books","floral","furniture","hot_dispensed","jewelry","tools","apparel","cold_dispensed","food_service","groceries","housewares","outdoors","salty_snacks","videos","beauty","electronics","footwear","homedecor","instruments","seasonal"),index = None,key = "input_category")
st.selectbox("Select one Gender", ("male","female"),index = None,key = "input_gender")
st.slider("Select a range of price", 0, 2000, (0, 0),50, key = "input_price")
if(st.session_state.input_category!=None or st.session_state.input_gender!=None or st.session_state.input_price!=(0,0)):
st.session_state.input_manual_filter="True"
else:
st.session_state.input_manual_filter="False"
clear_filter = st.button("Clear Filters",on_click=clear_filter)
####### Filters #########
if('NeuralSparse Search' in st.session_state.search_types):
st.subheader(':blue[Neural Sparse Search]')
sparse_filter = st.slider('Keep only sparse tokens with weight >=', 0.0, 1.0, 0.5,0.1,key = 'input_sparse_filter', help = 'Use this slider to set the minimum weight that the sparse vector token weights should meet, rest are filtered out')
st.session_state.input_is_rewrite_query = 'disabled'
st.session_state.input_is_sql_query = 'disabled'
########################## enable for query_rewrite ########################
if rewrite_query:
st.session_state.input_is_rewrite_query = 'enabled'
st.subheader(':blue[Vector Search]')
mvector_rerank = st.checkbox("Search and Re-rank with Token level vectors",key = 'mvector_rerank',help = "Enabling this option uses 'all-MiniLM-L6-v2' model's token level embeddings to retrieve documents and MaxSim to re-rank documents.\n\n Hugging Face Model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2")
if(mvector_rerank):
st.session_state.input_mvector_rerank = True
else:
st.session_state.input_mvector_rerank = False
st.subheader(':blue[Hybrid Search]')
with st.expander("Set query Weightage:"):
st.number_input("Keyword %", min_value=0, max_value=100, value=100, step=5, key='input_Keyword-weight', help=None)
st.number_input("Vector %", min_value=0, max_value=100, value=0, step=5, key='input_Vector-weight', help=None)
st.number_input("Multimodal %", min_value=0, max_value=100, value=0, step=5, key='input_Multimodal-weight', help=None)
st.number_input("NeuralSparse %", min_value=0, max_value=100, value=0, step=5, key='input_NeuralSparse-weight', help=None)
if(st.session_state.re_ranker == "true"):
st.subheader(':blue[Re-ranking]')
reranker = st.selectbox('Choose a Re-Ranker',
('None','Cohere Rerank'#'Kendra Rescore'
),
key = 'input_reranker',
help = 'Select the Re-Ranker type, select "None" to apply no re-ranking of the results',
args=(st.session_state.questions, st.session_state.answers)
)
def write_user_message(md,ans):
if(len(ans["answer"])>0):
ans = ans["answer"][0]
col1, col2, col3 = st.columns([3,40,20])
with col1:
st.image(USER_ICON, use_column_width='always')
with col2:
st.markdown("<div style='fontSize:15px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>Input Text: </div><div style='fontSize:25px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;font-style: italic;color:#e28743'>"+md['question']+"</div>", unsafe_allow_html = True)
if('query_sparse' in ans):
with st.expander("Expanded Query:"):
query_sparse = dict(sorted(ans['query_sparse'].items(), key=lambda item: item[1],reverse=True))
filtered_query_sparse = dict()
for key in query_sparse:
filtered_query_sparse[key] = round(query_sparse[key], 2)
st.write(filtered_query_sparse)
if(st.session_state.input_is_rewrite_query == "enabled" and st.session_state.input_rewritten_query !=""):
with st.expander("Re-written Query:"):
st.json(st.session_state.input_rewritten_query,expanded = True)
with col3:
st.markdown("<div style='fontSize:15px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>Input Image: </div>", unsafe_allow_html = True)
if(st.session_state.input_imageUpload == 'yes'):
if(st.session_state.input_rad_1 is not None and st.session_state.input_rad_1!=""):
num_str = str(int(st.session_state.input_rad_1.strip())-1)
img_file = parent_dirname+"/gen_images/"+st.session_state.image_prompt+"_gen_"+num_str+"-resized_display.jpg"
else:
img_file = parent_dirname+"/uploaded_images/"+st.session_state.img_doc.name.split(".")[0]+"-resized_display."+st.session_state.img_doc.name.split(".")[1]
st.image(img_file)
if(st.session_state.input_rekog_label !=""):
with st.expander("Enriched Query Metadata:"):
st.markdown('<p>'+json.dumps(st.session_state.input_rekog_directoutput)+'<p>',unsafe_allow_html=True)
else:
st.markdown("<div style='fontSize:15px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>None</div>", unsafe_allow_html = True)
st.markdown('---')
def stem_(sentence):
words = word_tokenize(sentence)
words_stem = []
for w in words:
words_stem.append( ps.stem(w))
return words_stem
def render_answer(answer,index):
column1, column2 = st.columns([6,90])
with column1:
st.image(AI_ICON, use_column_width='always')
with column2:
st.markdown("<div style='fontSize:25px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 10px;'>Results </div>", unsafe_allow_html = True)
if(st.session_state.input_evaluate == "enabled" and st.session_state.input_ndcg > 0):
span_color = "white"
if("&uarr;" in st.session_state.ndcg_increase):
span_color = "green"
if("&darr;" in st.session_state.ndcg_increase):
span_color = "red"
st.markdown("<span style='fontSize:20px;padding:3px 7px 3px 7px;borderWidth: 0px;borderColor: red;borderStyle: solid;width: fit-content;height: fit-content;border-radius: 20px;font-family:Courier New;color:#e28743'>Relevance:" +str('%.3f'%(st.session_state.input_ndcg)) + "</span><span style='font-size:30px;font-weight:bold;color:"+span_color+"'>"+st.session_state.ndcg_increase.split("~")[0] +"</span><span style='font-size:15px;font-weight:bold;font-family:Courier New;color:"+span_color+"'> "+st.session_state.ndcg_increase.split("~")[1]+"</span>", unsafe_allow_html = True)
placeholder_no_results = st.empty()
col_1, col_2,col_3 = st.columns([70,10,20])
i = 0
filter_out = 0
if len(answer) == 0:
st.markdown("<p style='fontSize:20px;color:orange'>No results found, please try again with different query</p>", unsafe_allow_html = True)
else:
for ans in answer:
if('b5/b5319e00' in ans['image_url'] ):
filter_out+=1
continue
format_ = ans['image_url'].split(".")[-1]
Image.MAX_IMAGE_PIXELS = 100000000
width = 500
height = 500
with col_1:
inner_col_1,inner_col_2 = st.columns([8,92])
with inner_col_2:
st.image(ans['image_url'].replace("/home/ec2-user/SageMaker/","/home/user/"))
if('max_score_dict_list_sorted' in ans and 'Vector Search' in st.session_state.input_searchType):
desc___ = ans['desc'].split(" ")
res___ = []
for o in ans['max_score_dict_list_sorted']:
res___.append(o['doc_token'])
final_desc_ = "<p></p><p>"
for word_ in desc___:
str_=re.sub('[^A-Za-z0-9]+', '', word_).lower()
stemmed_word = next(iter(set(stem_(str_))))
if(stemmed_word in res___ or str_ in res___):
if(stemmed_word in res___):
mod_word = stemmed_word
else:
mod_word = str_
if(res___.index(mod_word)==0):
final_desc_ += "<span style='color:#ffffff;background-color:#8B0001;font-weight:bold'>"+word_+"</span> "
elif(res___.index(mod_word)==1):
final_desc_ += "<span style='color:#ffffff;background-color:#C34632;font-weight:bold'>"+word_+"</span> "
else:
final_desc_ += "<span style='color:#ffffff;background-color:#E97452;font-weight:bold'>"+word_+"</span> "
else:
final_desc_ += word_ + " "
final_desc_ += "</p><br>"
st.markdown(final_desc_,unsafe_allow_html = True)
elif("highlight" in ans and 'Keyword Search' in st.session_state.input_searchType):
test_strs = ans["highlight"]
tag = "em"
res__ = []
for test_str in test_strs:
start_idx = test_str.find("<" + tag + ">")
while start_idx != -1:
end_idx = test_str.find("</" + tag + ">", start_idx)
if end_idx == -1:
break
res__.append(test_str[start_idx+len(tag)+2:end_idx])
start_idx = test_str.find("<" + tag + ">", end_idx)
desc__ = ans['desc'].split(" ")
final_desc = "<p>"
for word in desc__:
if(re.sub('[^A-Za-z0-9]+', '', word) in res__):
final_desc += "<span style='color:#e28743;font-weight:bold'>"+word+"</span> "
else:
final_desc += word + " "
final_desc += "</p>"
st.markdown(final_desc,unsafe_allow_html = True)
else:
st.write(ans['desc'])
if("sparse" in ans):
with st.expander("Expanded document:"):
sparse_ = dict(sorted(ans['sparse'].items(), key=lambda item: item[1],reverse=True))
filtered_sparse = dict()
for key in sparse_:
if(sparse_[key]>=1.0):
filtered_sparse[key] = round(sparse_[key], 2)
st.write(filtered_sparse)
with st.expander("Document Metadata:",expanded = False):
st.write(":green[default:]")
st.json({"category:":ans['category'],"price":str(ans['price']),"gender_affinity":ans['gender_affinity'],"style":ans['style']},expanded = True)
if("rekog" in ans):
st.write(":green[enriched:]")
st.json(ans['rekog'],expanded = True)
with inner_col_1:
if(st.session_state.input_evaluate == "enabled"):
with st.container(border = False):
if("relevant" in ans.keys()):
if(ans['relevant']==True):
st.write(":white_check_mark:")
else:
st.write(":x:")
i = i+1
with col_3:
if(index == len(st.session_state.questions)):
rdn_key = ''.join([random.choice(string.ascii_letters)
for _ in range(10)])
currentValue = "".join(st.session_state.input_searchType)+st.session_state.input_imageUpload+json.dumps(st.session_state.input_weightage)+st.session_state.input_NormType+st.session_state.input_CombineType+str(st.session_state.input_K)+st.session_state.input_sparse+st.session_state.input_reranker+st.session_state.input_is_rewrite_query+st.session_state.input_evaluate+st.session_state.input_image+st.session_state.input_rad_1+st.session_state.input_reranker+st.session_state.input_hybridType+st.session_state.input_manual_filter
oldValue = "".join(st.session_state.inputs_["searchType"])+st.session_state.inputs_["imageUpload"]+str(st.session_state.inputs_["weightage"])+st.session_state.inputs_["NormType"]+st.session_state.inputs_["CombineType"]+str(st.session_state.inputs_["K"])+st.session_state.inputs_["sparse"]+st.session_state.inputs_["reranker"]+st.session_state.inputs_["is_rewrite_query"]+st.session_state.inputs_["evaluate"]+st.session_state.inputs_["image"]+st.session_state.inputs_["rad_1"]+st.session_state.inputs_["reranker"]+st.session_state.inputs_["hybridType"]+st.session_state.inputs_["manual_filter"]
def on_button_click():
if(currentValue!=oldValue):
st.session_state.input_text = st.session_state.questions[-1]["question"]
st.session_state.answers.pop()
st.session_state.questions.pop()
handle_input()
with placeholder.container():
render_all()
if("currentValue" in st.session_state):
del st.session_state["currentValue"]
try:
del regenerate
except:
pass
placeholder__ = st.empty()
placeholder__.button("🔄",key=rdn_key,on_click=on_button_click, help = "This will regenerate the responses with new settings that you entered, Note: To see difference in responses, you should change any of the applicable settings")#,type="primary",use_column_width=True)
if(filter_out > 0):
placeholder_no_results.text(str(filter_out)+" result(s) removed due to missing or in-appropriate content")
#Each answer will have context of the question asked in order to associate the provided feedback with the respective question
def write_chat_message(md, q,index):
if('body' in md['answer']):
res = json.loads(md['answer']['body'])
else:
res = md['answer']
st.session_state['session_id'] = "1234"
chat = st.container()
with chat:
render_answer(res,index)
def render_all():
index = 0
for (q, a) in zip(st.session_state.questions, st.session_state.answers):
index = index +1
ans_ = st.session_state.answers[0]
write_user_message(q,ans_)
write_chat_message(a, q,index)
placeholder = st.empty()
with placeholder.container():
render_all()
st.markdown("")