File size: 1,677 Bytes
a428dd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96e56d7
 
 
a428dd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from huggingface_hub import hf_hub_url, hf_hub_download

import gradio as gr
import numpy as np
import requests

import torch
from torchvision import transforms
from torch.autograd import Variable

from PIL import Image

import warnings
warnings.filterwarnings('ignore')

path_to_model = hf_hub_download(repo_id="opetrova/face-frontalization", filename="generator_v0.pt")

# Download network.py into the current directory
network_url = hf_hub_url(repo_id="opetrova/face-frontalization", filename="network.py")
r = requests.get(network_url, allow_redirects=True)
open('network.py', 'wb').write(r.content)

saved_model = torch.load(path_to_model, map_location=torch.device('cpu'))

def frontalize(image):
    
    # Convert the test image to a [1, 3, 128, 128]-shaped torch tensor
    # (as required by the frontalization model)
    preprocess = transforms.Compose((transforms.ToPILImage(), 
                                     transforms.Resize(size = (128, 128)), 
                                     transforms.ToTensor()))
    input_tensor = torch.unsqueeze(preprocess(image), 0)
    
    # Use the saved model to generate an output (whose values go between -1 and 1, 
    # and this will need to get fixed before the output is displayed)
    generated_image = saved_model(Variable(input_tensor.type('torch.FloatTensor')))
    generated_image = generated_image.detach().squeeze().permute(1, 2, 0).numpy()
    generated_image = (generated_image + 1.0) / 2.0
    
    return generated_image

iface = gr.Interface(frontalize, gr.inputs.Image(type="numpy"), "image",
                                 examples=["amos.png", "clarissa.png"],
)
iface.launch()