Spaces:
Running
Running
Commit
Β·
dc685a9
1
Parent(s):
14d526b
updated layout
Browse files- app.py +7 -11
- src/bettertransformer.py +21 -19
- src/control_panel.py +9 -9
- src/flashattentionv2.py +7 -6
- src/latency_score_memory.py +3 -1
- src/{custom_kernels.py β quantization_kernels.py} +25 -33
app.py
CHANGED
@@ -4,10 +4,10 @@ import gradio as gr
|
|
4 |
|
5 |
from src.control_panel import create_control_panel, create_control_callback
|
6 |
from src.latency_score_memory import create_lat_score_mem_plot
|
|
|
7 |
from src.leaderboard import create_leaderboard_table
|
8 |
from src.bettertransformer import create_bt_plots
|
9 |
from src.flashattentionv2 import create_fa2_plots
|
10 |
-
from src.custom_kernels import create_custom_kernels_plots
|
11 |
from src.llm_perf import get_llm_perf_df
|
12 |
from src.assets import custom_css
|
13 |
from src.content import (
|
@@ -52,18 +52,14 @@ with demo:
|
|
52 |
####################### LEADERBOARD TAB #######################
|
53 |
with gr.TabItem("Leaderboard π
", id=0):
|
54 |
leaderboard_table = create_leaderboard_table(llm_perf_df)
|
55 |
-
####################### LAT. vs. SCORE vs. MEM. TAB #######################
|
56 |
-
with gr.TabItem("Latency vs. Score vs. Memory π", id=1):
|
57 |
lat_score_mem_plot = create_lat_score_mem_plot(llm_perf_df)
|
58 |
####################### BETTERTRANSFORMER SPEEDUP TAB #######################
|
59 |
-
with gr.TabItem("BetterTransformer
|
60 |
bt_prefill_plot, bt_decode_plot = create_bt_plots(llm_perf_df)
|
61 |
-
with gr.TabItem("FlashAttentionV2
|
62 |
fa2_prefill_plot, fa2_decode_plot = create_fa2_plots(llm_perf_df)
|
63 |
-
with gr.TabItem("Custom Quantization Kernels
|
64 |
-
|
65 |
-
llm_perf_df
|
66 |
-
)
|
67 |
|
68 |
####################### CONTROL CALLBACK #######################
|
69 |
create_control_callback(
|
@@ -84,8 +80,8 @@ with demo:
|
|
84 |
bt_decode_plot,
|
85 |
fa2_prefill_plot,
|
86 |
fa2_decode_plot,
|
87 |
-
|
88 |
-
|
89 |
)
|
90 |
####################### ABOUT TAB #######################
|
91 |
with gr.TabItem("About π", id=3):
|
|
|
4 |
|
5 |
from src.control_panel import create_control_panel, create_control_callback
|
6 |
from src.latency_score_memory import create_lat_score_mem_plot
|
7 |
+
from src.quantization_kernels import create_quant_plots
|
8 |
from src.leaderboard import create_leaderboard_table
|
9 |
from src.bettertransformer import create_bt_plots
|
10 |
from src.flashattentionv2 import create_fa2_plots
|
|
|
11 |
from src.llm_perf import get_llm_perf_df
|
12 |
from src.assets import custom_css
|
13 |
from src.content import (
|
|
|
52 |
####################### LEADERBOARD TAB #######################
|
53 |
with gr.TabItem("Leaderboard π
", id=0):
|
54 |
leaderboard_table = create_leaderboard_table(llm_perf_df)
|
|
|
|
|
55 |
lat_score_mem_plot = create_lat_score_mem_plot(llm_perf_df)
|
56 |
####################### BETTERTRANSFORMER SPEEDUP TAB #######################
|
57 |
+
with gr.TabItem("BetterTransformer π", id=2):
|
58 |
bt_prefill_plot, bt_decode_plot = create_bt_plots(llm_perf_df)
|
59 |
+
with gr.TabItem("FlashAttentionV2 π", id=3):
|
60 |
fa2_prefill_plot, fa2_decode_plot = create_fa2_plots(llm_perf_df)
|
61 |
+
with gr.TabItem("Custom Quantization Kernels π", id=4):
|
62 |
+
quant_prefill_plot, quant_decode_plot = create_quant_plots(llm_perf_df)
|
|
|
|
|
63 |
|
64 |
####################### CONTROL CALLBACK #######################
|
65 |
create_control_callback(
|
|
|
80 |
bt_decode_plot,
|
81 |
fa2_prefill_plot,
|
82 |
fa2_decode_plot,
|
83 |
+
quant_prefill_plot,
|
84 |
+
quant_decode_plot,
|
85 |
)
|
86 |
####################### ABOUT TAB #######################
|
87 |
with gr.TabItem("About π", id=3):
|
src/bettertransformer.py
CHANGED
@@ -14,7 +14,9 @@ BETTERTRANSFORMER_DATA = [
|
|
14 |
# deployment settings
|
15 |
"DType π₯",
|
16 |
"Backend π",
|
|
|
17 |
"Quantization ποΈ",
|
|
|
18 |
# primary measurements
|
19 |
"Prefill Latency (s)",
|
20 |
"Prefill Latency (s) BetterTransformer",
|
@@ -29,10 +31,10 @@ BETTERTRANSFORMER_DATA = [
|
|
29 |
|
30 |
|
31 |
def get_bt_df(llm_perf_df):
|
32 |
-
|
33 |
# seperate original model experiments from BetterTransformer experiments
|
34 |
-
original_df =
|
35 |
-
bt_df =
|
36 |
# merge the two dataframes
|
37 |
bt_df = pd.merge(
|
38 |
original_df,
|
@@ -54,78 +56,78 @@ def get_bt_df(llm_perf_df):
|
|
54 |
return bt_df
|
55 |
|
56 |
|
57 |
-
def
|
58 |
bt_df = get_bt_df(llm_perf_df)
|
59 |
# plot
|
60 |
-
|
61 |
bt_df,
|
62 |
x="Arch ποΈ",
|
63 |
-
y="
|
64 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
65 |
custom_data=BETTERTRANSFORMER_DATA,
|
66 |
color="Quantization ποΈ",
|
67 |
points="all",
|
68 |
)
|
69 |
# add hover data
|
70 |
-
|
71 |
hovertemplate="<br>".join(
|
72 |
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(BETTERTRANSFORMER_DATA)]
|
73 |
)
|
74 |
)
|
75 |
# add layout
|
76 |
-
|
77 |
title={
|
78 |
-
"text": "
|
79 |
"y": 0.95,
|
80 |
"x": 0.5,
|
81 |
"xanchor": "center",
|
82 |
"yanchor": "top",
|
83 |
},
|
84 |
xaxis_title="LLM Architecture",
|
85 |
-
yaxis_title="
|
86 |
legend_title="Quantization Scheme",
|
87 |
width=1200,
|
88 |
height=600,
|
89 |
)
|
90 |
|
91 |
-
return
|
92 |
|
93 |
|
94 |
-
def
|
95 |
bt_df = get_bt_df(llm_perf_df)
|
96 |
# plot
|
97 |
-
|
98 |
bt_df,
|
99 |
x="Arch ποΈ",
|
100 |
-
y="
|
101 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
102 |
custom_data=BETTERTRANSFORMER_DATA,
|
103 |
color="Quantization ποΈ",
|
104 |
points="all",
|
105 |
)
|
106 |
# add hover data
|
107 |
-
|
108 |
hovertemplate="<br>".join(
|
109 |
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(BETTERTRANSFORMER_DATA)]
|
110 |
)
|
111 |
)
|
112 |
# add layout
|
113 |
-
|
114 |
title={
|
115 |
-
"text": "
|
116 |
"y": 0.95,
|
117 |
"x": 0.5,
|
118 |
"xanchor": "center",
|
119 |
"yanchor": "top",
|
120 |
},
|
121 |
xaxis_title="LLM Architecture",
|
122 |
-
yaxis_title="
|
123 |
legend_title="Quantization Scheme",
|
124 |
width=1200,
|
125 |
height=600,
|
126 |
)
|
127 |
|
128 |
-
return
|
129 |
|
130 |
|
131 |
def create_bt_plots(llm_perf_df):
|
|
|
14 |
# deployment settings
|
15 |
"DType π₯",
|
16 |
"Backend π",
|
17 |
+
"Optimization π οΈ",
|
18 |
"Quantization ποΈ",
|
19 |
+
"Optimization π οΈ BetterTransformer",
|
20 |
# primary measurements
|
21 |
"Prefill Latency (s)",
|
22 |
"Prefill Latency (s) BetterTransformer",
|
|
|
31 |
|
32 |
|
33 |
def get_bt_df(llm_perf_df):
|
34 |
+
copy_df = llm_perf_df.copy()
|
35 |
# seperate original model experiments from BetterTransformer experiments
|
36 |
+
original_df = copy_df[(copy_df["Optimization π οΈ"] == "None") & (copy_df["DType π₯"] == "float16")]
|
37 |
+
bt_df = copy_df[(copy_df["Optimization π οΈ"] == "BetterTransformer") & (copy_df["DType π₯"] == "float16")]
|
38 |
# merge the two dataframes
|
39 |
bt_df = pd.merge(
|
40 |
original_df,
|
|
|
56 |
return bt_df
|
57 |
|
58 |
|
59 |
+
def get_bt_prefill_fig(llm_perf_df):
|
60 |
bt_df = get_bt_df(llm_perf_df)
|
61 |
# plot
|
62 |
+
prefill_fig = px.box(
|
63 |
bt_df,
|
64 |
x="Arch ποΈ",
|
65 |
+
y="Prefill Latency Speedup (%)",
|
66 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
67 |
custom_data=BETTERTRANSFORMER_DATA,
|
68 |
color="Quantization ποΈ",
|
69 |
points="all",
|
70 |
)
|
71 |
# add hover data
|
72 |
+
prefill_fig.update_traces(
|
73 |
hovertemplate="<br>".join(
|
74 |
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(BETTERTRANSFORMER_DATA)]
|
75 |
)
|
76 |
)
|
77 |
# add layout
|
78 |
+
prefill_fig.update_layout(
|
79 |
title={
|
80 |
+
"text": "Prefill Latency Speedup per Architecture, Compared To Non-Optimized Model",
|
81 |
"y": 0.95,
|
82 |
"x": 0.5,
|
83 |
"xanchor": "center",
|
84 |
"yanchor": "top",
|
85 |
},
|
86 |
xaxis_title="LLM Architecture",
|
87 |
+
yaxis_title="Prefill Speedup (%)",
|
88 |
legend_title="Quantization Scheme",
|
89 |
width=1200,
|
90 |
height=600,
|
91 |
)
|
92 |
|
93 |
+
return prefill_fig
|
94 |
|
95 |
|
96 |
+
def get_bt_decode_fig(llm_perf_df):
|
97 |
bt_df = get_bt_df(llm_perf_df)
|
98 |
# plot
|
99 |
+
decode_fig = px.box(
|
100 |
bt_df,
|
101 |
x="Arch ποΈ",
|
102 |
+
y="Decode Throughput Speedup (%)",
|
103 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
104 |
custom_data=BETTERTRANSFORMER_DATA,
|
105 |
color="Quantization ποΈ",
|
106 |
points="all",
|
107 |
)
|
108 |
# add hover data
|
109 |
+
decode_fig.update_traces(
|
110 |
hovertemplate="<br>".join(
|
111 |
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(BETTERTRANSFORMER_DATA)]
|
112 |
)
|
113 |
)
|
114 |
# add layout
|
115 |
+
decode_fig.update_layout(
|
116 |
title={
|
117 |
+
"text": "Decode Throughput Speedup per Architecture, Compared To Non-Optimized Model",
|
118 |
"y": 0.95,
|
119 |
"x": 0.5,
|
120 |
"xanchor": "center",
|
121 |
"yanchor": "top",
|
122 |
},
|
123 |
xaxis_title="LLM Architecture",
|
124 |
+
yaxis_title="Decode Speedup (%)",
|
125 |
legend_title="Quantization Scheme",
|
126 |
width=1200,
|
127 |
height=600,
|
128 |
)
|
129 |
|
130 |
+
return decode_fig
|
131 |
|
132 |
|
133 |
def create_bt_plots(llm_perf_df):
|
src/control_panel.py
CHANGED
@@ -5,7 +5,7 @@ from src.leaderboard import get_leaderboard_df
|
|
5 |
from src.latency_score_memory import get_lat_score_mem_fig
|
6 |
from src.bettertransformer import get_bt_prefill_fig, get_bt_decode_fig
|
7 |
from src.flashattentionv2 import get_fa2_prefill_fig, get_fa2_decode_fig
|
8 |
-
from src.
|
9 |
|
10 |
|
11 |
def create_control_panel(machine: str = "hf-dgx-01"):
|
@@ -133,8 +133,8 @@ def filter_fn(
|
|
133 |
filtered_bt_decode_fig = get_bt_decode_fig(filtered_df)
|
134 |
filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df)
|
135 |
filtered_fa2_decode_fig = get_fa2_decode_fig(filtered_df)
|
136 |
-
|
137 |
-
|
138 |
|
139 |
return [
|
140 |
filtered_leaderboard_df,
|
@@ -143,8 +143,8 @@ def filter_fn(
|
|
143 |
filtered_bt_decode_fig,
|
144 |
filtered_fa2_prefill_fig,
|
145 |
filtered_fa2_decode_fig,
|
146 |
-
|
147 |
-
|
148 |
]
|
149 |
|
150 |
|
@@ -167,8 +167,8 @@ def create_control_callback(
|
|
167 |
bt_decode_plot,
|
168 |
fa2_prefill_plot,
|
169 |
fa2_decode_plot,
|
170 |
-
|
171 |
-
|
172 |
):
|
173 |
filter_button.click(
|
174 |
fn=filter_fn,
|
@@ -189,7 +189,7 @@ def create_control_callback(
|
|
189 |
bt_decode_plot,
|
190 |
fa2_prefill_plot,
|
191 |
fa2_decode_plot,
|
192 |
-
|
193 |
-
|
194 |
],
|
195 |
)
|
|
|
5 |
from src.latency_score_memory import get_lat_score_mem_fig
|
6 |
from src.bettertransformer import get_bt_prefill_fig, get_bt_decode_fig
|
7 |
from src.flashattentionv2 import get_fa2_prefill_fig, get_fa2_decode_fig
|
8 |
+
from src.quantization_kernels import get_quant_prefill_fig, get_quant_decode_fig
|
9 |
|
10 |
|
11 |
def create_control_panel(machine: str = "hf-dgx-01"):
|
|
|
133 |
filtered_bt_decode_fig = get_bt_decode_fig(filtered_df)
|
134 |
filtered_fa2_prefill_fig = get_fa2_prefill_fig(filtered_df)
|
135 |
filtered_fa2_decode_fig = get_fa2_decode_fig(filtered_df)
|
136 |
+
filtered_quant_prefill_fig = get_quant_prefill_fig(filtered_df)
|
137 |
+
filtered_quant_decode_fig = get_quant_decode_fig(filtered_df)
|
138 |
|
139 |
return [
|
140 |
filtered_leaderboard_df,
|
|
|
143 |
filtered_bt_decode_fig,
|
144 |
filtered_fa2_prefill_fig,
|
145 |
filtered_fa2_decode_fig,
|
146 |
+
filtered_quant_prefill_fig,
|
147 |
+
filtered_quant_decode_fig,
|
148 |
]
|
149 |
|
150 |
|
|
|
167 |
bt_decode_plot,
|
168 |
fa2_prefill_plot,
|
169 |
fa2_decode_plot,
|
170 |
+
quant_prefill_plot,
|
171 |
+
quant_decode_plot,
|
172 |
):
|
173 |
filter_button.click(
|
174 |
fn=filter_fn,
|
|
|
189 |
bt_decode_plot,
|
190 |
fa2_prefill_plot,
|
191 |
fa2_decode_plot,
|
192 |
+
quant_prefill_plot,
|
193 |
+
quant_decode_plot,
|
194 |
],
|
195 |
)
|
src/flashattentionv2.py
CHANGED
@@ -14,7 +14,9 @@ FLASHATTENTIONV2_DATA = [
|
|
14 |
# deployment settings
|
15 |
"DType π₯",
|
16 |
"Backend π",
|
|
|
17 |
"Quantization ποΈ",
|
|
|
18 |
# primary measurements
|
19 |
"Prefill Latency (s)",
|
20 |
"Prefill Latency (s) FlashAttentionV2",
|
@@ -29,10 +31,10 @@ FLASHATTENTIONV2_DATA = [
|
|
29 |
|
30 |
|
31 |
def get_fa2_df(llm_perf_df):
|
32 |
-
|
33 |
# seperate original model experiments from FlashAttentionV2 experiments
|
34 |
-
original_df =
|
35 |
-
fa2_df =
|
36 |
# merge the two dataframes
|
37 |
fa2_df = pd.merge(
|
38 |
original_df,
|
@@ -47,7 +49,6 @@ def get_fa2_df(llm_perf_df):
|
|
47 |
fa2_df["Decode Throughput Speedup (%)"] = (
|
48 |
(fa2_df["Decode Throughput (tokens/s) FlashAttentionV2"] / fa2_df["Decode Throughput (tokens/s)"]) * 100
|
49 |
).round(2) - 100
|
50 |
-
|
51 |
# filter speedups > 1000%
|
52 |
fa2_df = fa2_df[fa2_df["Prefill Latency Speedup (%)"] < 1000]
|
53 |
fa2_df = fa2_df[fa2_df["Decode Throughput Speedup (%)"] < 1000]
|
@@ -76,7 +77,7 @@ def get_fa2_decode_fig(llm_perf_df):
|
|
76 |
# add layout
|
77 |
decode_fig.update_layout(
|
78 |
title={
|
79 |
-
"text": "Decode Throughput Speedup per Architecture",
|
80 |
"y": 0.95,
|
81 |
"x": 0.5,
|
82 |
"xanchor": "center",
|
@@ -113,7 +114,7 @@ def get_fa2_prefill_fig(llm_perf_df):
|
|
113 |
# add layout
|
114 |
prefill_fig.update_layout(
|
115 |
title={
|
116 |
-
"text": "Prefill Latency Speedup per Architecture",
|
117 |
"y": 0.95,
|
118 |
"x": 0.5,
|
119 |
"xanchor": "center",
|
|
|
14 |
# deployment settings
|
15 |
"DType π₯",
|
16 |
"Backend π",
|
17 |
+
"Optimization π οΈ",
|
18 |
"Quantization ποΈ",
|
19 |
+
"Optimization π οΈ FlashAttentionV2",
|
20 |
# primary measurements
|
21 |
"Prefill Latency (s)",
|
22 |
"Prefill Latency (s) FlashAttentionV2",
|
|
|
31 |
|
32 |
|
33 |
def get_fa2_df(llm_perf_df):
|
34 |
+
copy_df = llm_perf_df.copy()
|
35 |
# seperate original model experiments from FlashAttentionV2 experiments
|
36 |
+
original_df = copy_df[(copy_df["Optimization π οΈ"] == "None") & (copy_df["DType π₯"] == "float16")]
|
37 |
+
fa2_df = copy_df[(copy_df["Optimization π οΈ"] == "FlashAttentionV2") & (copy_df["DType π₯"] == "float16")]
|
38 |
# merge the two dataframes
|
39 |
fa2_df = pd.merge(
|
40 |
original_df,
|
|
|
49 |
fa2_df["Decode Throughput Speedup (%)"] = (
|
50 |
(fa2_df["Decode Throughput (tokens/s) FlashAttentionV2"] / fa2_df["Decode Throughput (tokens/s)"]) * 100
|
51 |
).round(2) - 100
|
|
|
52 |
# filter speedups > 1000%
|
53 |
fa2_df = fa2_df[fa2_df["Prefill Latency Speedup (%)"] < 1000]
|
54 |
fa2_df = fa2_df[fa2_df["Decode Throughput Speedup (%)"] < 1000]
|
|
|
77 |
# add layout
|
78 |
decode_fig.update_layout(
|
79 |
title={
|
80 |
+
"text": "Decode Throughput Speedup per Architecture, Compared To Non-Optimized Model",
|
81 |
"y": 0.95,
|
82 |
"x": 0.5,
|
83 |
"xanchor": "center",
|
|
|
114 |
# add layout
|
115 |
prefill_fig.update_layout(
|
116 |
title={
|
117 |
+
"text": "Prefill Latency Speedup per Architecture, Compared To Non-Optimized Model",
|
118 |
"y": 0.95,
|
119 |
"x": 0.5,
|
120 |
"xanchor": "center",
|
src/latency_score_memory.py
CHANGED
@@ -8,6 +8,8 @@ SCORE_MEMORY_LATENCY_DATA = [
|
|
8 |
"Params (B)",
|
9 |
"DType π₯",
|
10 |
"Backend π",
|
|
|
|
|
11 |
"Open LLM Score (%)",
|
12 |
"Prefill Latency (s)",
|
13 |
"Decode Throughput (tokens/s)",
|
@@ -42,7 +44,7 @@ def get_lat_score_mem_fig(llm_perf_df):
|
|
42 |
"xanchor": "center",
|
43 |
"yanchor": "top",
|
44 |
},
|
45 |
-
xaxis_title="
|
46 |
yaxis_title="Open LLM Score (%)",
|
47 |
legend_title="LLM Architecture",
|
48 |
width=1200,
|
|
|
8 |
"Params (B)",
|
9 |
"DType π₯",
|
10 |
"Backend π",
|
11 |
+
"Optimization π οΈ",
|
12 |
+
"Quantization ποΈ",
|
13 |
"Open LLM Score (%)",
|
14 |
"Prefill Latency (s)",
|
15 |
"Decode Throughput (tokens/s)",
|
|
|
44 |
"xanchor": "center",
|
45 |
"yanchor": "top",
|
46 |
},
|
47 |
+
xaxis_title="Time To Generate 256 Tokens (s)",
|
48 |
yaxis_title="Open LLM Score (%)",
|
49 |
legend_title="LLM Architecture",
|
50 |
width=1200,
|
src/{custom_kernels.py β quantization_kernels.py}
RENAMED
@@ -3,7 +3,7 @@ import pandas as pd
|
|
3 |
import plotly.express as px
|
4 |
|
5 |
|
6 |
-
|
7 |
# open llm
|
8 |
"Model π€",
|
9 |
"Arch ποΈ",
|
@@ -29,13 +29,13 @@ CUSTOM_KERNELS_DATA = [
|
|
29 |
]
|
30 |
|
31 |
|
32 |
-
def
|
33 |
copy_df = llm_perf_df.copy()
|
34 |
# seperate vanilla GPTQ experiments from Custom Kernel experiments
|
35 |
vanilla_df = copy_df[
|
36 |
-
(copy_df["Backend π"] == "pytorch") &
|
37 |
(copy_df["Quantization ποΈ"] == "None") &
|
38 |
-
(copy_df["Optimization π οΈ"] == "None") &
|
39 |
(copy_df["DType π₯"] == "float16")
|
40 |
]
|
41 |
exllamav1_df = copy_df[(copy_df["Quantization ποΈ"] == "GPTQ.4bit+ExllamaV1")]
|
@@ -68,42 +68,36 @@ def get_custom_kernels_df(llm_perf_df):
|
|
68 |
suffixes=["", " Custom Kernel"],
|
69 |
)
|
70 |
# concat the two dataframes row-wise
|
71 |
-
|
72 |
# compute speedups
|
73 |
-
|
74 |
-
(
|
75 |
).round(2) - 100
|
76 |
-
|
77 |
-
(
|
78 |
-
custom_kernels_df["Decode Throughput (tokens/s) Custom Kernel"]
|
79 |
-
/ custom_kernels_df["Decode Throughput (tokens/s)"]
|
80 |
-
)
|
81 |
-
* 100
|
82 |
).round(2) - 100
|
83 |
# filter speedups > 1000%
|
84 |
-
|
85 |
-
|
86 |
|
87 |
-
return
|
88 |
|
89 |
|
90 |
-
def
|
91 |
-
|
92 |
# plot
|
93 |
decode_fig = px.box(
|
94 |
-
|
95 |
x="Arch ποΈ",
|
96 |
y="Decode Throughput Speedup (%)",
|
97 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
98 |
-
custom_data=
|
99 |
color="Quantization ποΈ Custom Kernel",
|
100 |
points="all",
|
101 |
)
|
102 |
# add hover data
|
103 |
decode_fig.update_traces(
|
104 |
-
hovertemplate="<br>".join(
|
105 |
-
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(CUSTOM_KERNELS_DATA)]
|
106 |
-
)
|
107 |
)
|
108 |
# add layout
|
109 |
decode_fig.update_layout(
|
@@ -124,23 +118,21 @@ def get_custom_kernels_decode_fig(llm_perf_df):
|
|
124 |
return decode_fig
|
125 |
|
126 |
|
127 |
-
def
|
128 |
-
|
129 |
# plot
|
130 |
prefill_fig = px.box(
|
131 |
-
|
132 |
x="Arch ποΈ",
|
133 |
y="Prefill Latency Speedup (%)",
|
134 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
135 |
-
custom_data=
|
136 |
color="Quantization ποΈ Custom Kernel",
|
137 |
points="all",
|
138 |
)
|
139 |
# add hover data
|
140 |
prefill_fig.update_traces(
|
141 |
-
hovertemplate="<br>".join(
|
142 |
-
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(CUSTOM_KERNELS_DATA)]
|
143 |
-
)
|
144 |
)
|
145 |
# add layout
|
146 |
prefill_fig.update_layout(
|
@@ -161,12 +153,12 @@ def get_custom_kernels_prefill_fig(llm_perf_df):
|
|
161 |
return prefill_fig
|
162 |
|
163 |
|
164 |
-
def
|
165 |
# descriptive text
|
166 |
gr.HTML("π Hover over the points π for additional information.", elem_id="text")
|
167 |
# get figures
|
168 |
-
prefill_fig =
|
169 |
-
decode_fig =
|
170 |
|
171 |
# create plots
|
172 |
prefill_plot = gr.components.Plot(value=prefill_fig, elem_id="plot", show_label=False)
|
|
|
3 |
import plotly.express as px
|
4 |
|
5 |
|
6 |
+
QUANT_DATA = [
|
7 |
# open llm
|
8 |
"Model π€",
|
9 |
"Arch ποΈ",
|
|
|
29 |
]
|
30 |
|
31 |
|
32 |
+
def get_quant_df(llm_perf_df):
|
33 |
copy_df = llm_perf_df.copy()
|
34 |
# seperate vanilla GPTQ experiments from Custom Kernel experiments
|
35 |
vanilla_df = copy_df[
|
36 |
+
(copy_df["Backend π"] == "pytorch") &
|
37 |
(copy_df["Quantization ποΈ"] == "None") &
|
38 |
+
(copy_df["Optimization π οΈ"] == "None") &
|
39 |
(copy_df["DType π₯"] == "float16")
|
40 |
]
|
41 |
exllamav1_df = copy_df[(copy_df["Quantization ποΈ"] == "GPTQ.4bit+ExllamaV1")]
|
|
|
68 |
suffixes=["", " Custom Kernel"],
|
69 |
)
|
70 |
# concat the two dataframes row-wise
|
71 |
+
quant_df = pd.concat([exllamav1_df, exllamav2_df, gemm_df, gemv_df])
|
72 |
# compute speedups
|
73 |
+
quant_df["Prefill Latency Speedup (%)"] = (
|
74 |
+
(quant_df["Prefill Latency (s)"] / quant_df["Prefill Latency (s) Custom Kernel"]) * 100
|
75 |
).round(2) - 100
|
76 |
+
quant_df["Decode Throughput Speedup (%)"] = (
|
77 |
+
(quant_df["Decode Throughput (tokens/s) Custom Kernel"] / quant_df["Decode Throughput (tokens/s)"]) * 100
|
|
|
|
|
|
|
|
|
78 |
).round(2) - 100
|
79 |
# filter speedups > 1000%
|
80 |
+
quant_df = quant_df[quant_df["Prefill Latency Speedup (%)"] < 1000]
|
81 |
+
quant_df = quant_df[quant_df["Decode Throughput Speedup (%)"] < 1000]
|
82 |
|
83 |
+
return quant_df
|
84 |
|
85 |
|
86 |
+
def get_quant_decode_fig(llm_perf_df):
|
87 |
+
quant_df = get_quant_df(llm_perf_df)
|
88 |
# plot
|
89 |
decode_fig = px.box(
|
90 |
+
quant_df,
|
91 |
x="Arch ποΈ",
|
92 |
y="Decode Throughput Speedup (%)",
|
93 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
94 |
+
custom_data=QUANT_DATA,
|
95 |
color="Quantization ποΈ Custom Kernel",
|
96 |
points="all",
|
97 |
)
|
98 |
# add hover data
|
99 |
decode_fig.update_traces(
|
100 |
+
hovertemplate="<br>".join([f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(QUANT_DATA)])
|
|
|
|
|
101 |
)
|
102 |
# add layout
|
103 |
decode_fig.update_layout(
|
|
|
118 |
return decode_fig
|
119 |
|
120 |
|
121 |
+
def get_quant_prefill_fig(llm_perf_df):
|
122 |
+
quant_df = get_quant_df(llm_perf_df)
|
123 |
# plot
|
124 |
prefill_fig = px.box(
|
125 |
+
quant_df,
|
126 |
x="Arch ποΈ",
|
127 |
y="Prefill Latency Speedup (%)",
|
128 |
color_discrete_sequence=px.colors.qualitative.Light24,
|
129 |
+
custom_data=QUANT_DATA,
|
130 |
color="Quantization ποΈ Custom Kernel",
|
131 |
points="all",
|
132 |
)
|
133 |
# add hover data
|
134 |
prefill_fig.update_traces(
|
135 |
+
hovertemplate="<br>".join([f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(QUANT_DATA)])
|
|
|
|
|
136 |
)
|
137 |
# add layout
|
138 |
prefill_fig.update_layout(
|
|
|
153 |
return prefill_fig
|
154 |
|
155 |
|
156 |
+
def create_quant_plots(llm_perf_df):
|
157 |
# descriptive text
|
158 |
gr.HTML("π Hover over the points π for additional information.", elem_id="text")
|
159 |
# get figures
|
160 |
+
prefill_fig = get_quant_prefill_fig(llm_perf_df)
|
161 |
+
decode_fig = get_quant_decode_fig(llm_perf_df)
|
162 |
|
163 |
# create plots
|
164 |
prefill_plot = gr.components.Plot(value=prefill_fig, elem_id="plot", show_label=False)
|