File size: 10,286 Bytes
241adf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import argparse
import copy
import os
import pickle
import random
import cv2
import numpy as np
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.runner import load_checkpoint
from mmpose.core import wrap_fp16_model
from mmpose.models import build_posenet
from torchvision import transforms
from models import *
import torchvision.transforms.functional as F

from tools.visualization import plot_results

COLORS = [
    [255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0],
    [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
    [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255],
    [255, 0, 255], [255, 0, 170], [255, 0, 85], [255, 0, 0]]

class Resize_Pad:
    def __init__(self, w=256, h=256):
        self.w = w
        self.h = h

    def __call__(self, image):
        _, w_1, h_1 = image.shape
        ratio_1 = w_1 / h_1
        # check if the original and final aspect ratios are the same within a margin
        if round(ratio_1, 2) != 1:
            # padding to preserve aspect ratio
            if ratio_1 > 1:  # Make the image higher
                hp = int(w_1 - h_1)
                hp = hp // 2
                image = F.pad(image, (hp, 0, hp, 0), 0, "constant")
                return F.resize(image, [self.h, self.w])
            else:
                wp = int(h_1 - w_1)
                wp = wp // 2
                image = F.pad(image, (0, wp, 0, wp), 0, "constant")
                return F.resize(image, [self.h, self.w])
        else:
            return F.resize(image, [self.h, self.w])


def transform_keypoints_to_pad_and_resize(keypoints, image_size):
    trans_keypoints = keypoints.clone()
    h, w = image_size[:2]
    ratio_1 = w / h
    if ratio_1 > 1:
        # width is bigger than height - pad height
        hp = int(w - h)
        hp = hp // 2
        trans_keypoints[:, 1] = keypoints[:, 1] + hp
        trans_keypoints *= (256. / w)
    else:
        # height is bigger than width - pad width
        wp = int(image_size[1] - image_size[0])
        wp = wp // 2
        trans_keypoints[:, 0] = keypoints[:, 0] + wp
        trans_keypoints *= (256. / h)
    return trans_keypoints


def parse_args():
    parser = argparse.ArgumentParser(description='Pose Anything Demo')
    parser.add_argument('--support', help='Image file')
    parser.add_argument('--query', help='Image file')
    parser.add_argument('--config', default=None, help='test config file path')
    parser.add_argument('--checkpoint', default=None, help='checkpoint file')
    parser.add_argument('--outdir', default='output', help='checkpoint file')

    parser.add_argument(
        '--fuse-conv-bn',
        action='store_true',
        help='Whether to fuse conv and bn, this will slightly increase'
             'the inference speed')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        default={},
        help='override some settings in the used config, the key-value pair '
             'in xxx=yyy format will be merged into config file. For example, '
             "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
    args = parser.parse_args()
    return args


def merge_configs(cfg1, cfg2):
    # Merge cfg2 into cfg1
    # Overwrite cfg1 if repeated, ignore if value is None.
    cfg1 = {} if cfg1 is None else cfg1.copy()
    cfg2 = {} if cfg2 is None else cfg2
    for k, v in cfg2.items():
        if v:
            cfg1[k] = v
    return cfg1


def main():
    random.seed(0)
    np.random.seed(0)
    torch.manual_seed(0)

    args = parse_args()
    cfg = Config.fromfile(args.config)

    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.data.test.test_mode = True

    os.makedirs(args.outdir, exist_ok=True)

    # Load data
    support_img = cv2.imread(args.support)
    query_img = cv2.imread(args.query)
    if support_img is None or query_img is None:
        raise ValueError('Fail to read images')

    preprocess = transforms.Compose([
        transforms.ToTensor(),
        Resize_Pad(cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size)])

    # frame = copy.deepcopy(support_img)
    padded_support_img = preprocess(support_img).cpu().numpy().transpose(1, 2, 0) * 255
    frame = copy.deepcopy(padded_support_img.astype(np.uint8).copy())
    kp_src = []
    skeleton = []
    count = 0
    prev_pt = None
    prev_pt_idx = None
    color_idx = 0

    def selectKP(event, x, y, flags, param):
        nonlocal kp_src, frame
        # if we are in points selection mode, the mouse was clicked,
        # list of  points with the (x, y) location of the click
        # and draw the circle

        if event == cv2.EVENT_LBUTTONDOWN:
            kp_src.append((x, y))
            cv2.circle(frame, (x, y), 2, (0, 0, 255), 1)
            cv2.imshow("Source", frame)

        if event == cv2.EVENT_RBUTTONDOWN:
            kp_src = []
            frame = copy.deepcopy(support_img)
            cv2.imshow("Source", frame)

    def draw_line(event, x, y, flags, param):
        nonlocal skeleton, kp_src, frame, count, prev_pt, prev_pt_idx, marked_frame, color_idx
        if event == cv2.EVENT_LBUTTONDOWN:
            closest_point = min(kp_src, key=lambda p: (p[0] - x) ** 2 + (p[1] - y) ** 2)
            closest_point_index = kp_src.index(closest_point)
            if color_idx < len(COLORS):
                c = COLORS[color_idx]
            else:
                c = random.choices(range(256), k=3)
            color = color_idx
            cv2.circle(frame, closest_point, 2, c, 1)
            if count == 0:
                prev_pt = closest_point
                prev_pt_idx = closest_point_index
                count = count + 1
                cv2.imshow("Source", frame)
            else:
                cv2.line(frame, prev_pt, closest_point, c, 2)
                cv2.imshow("Source", frame)
                count = 0
                skeleton.append((prev_pt_idx, closest_point_index))
                color_idx = color_idx + 1
        elif event == cv2.EVENT_RBUTTONDOWN:
            frame = copy.deepcopy(marked_frame)
            cv2.imshow("Source", frame)
            count = 0
            color_idx = 0
            skeleton = []
            prev_pt = None

    cv2.namedWindow("Source", cv2.WINDOW_NORMAL)
    cv2.resizeWindow('Source', 800, 600)
    cv2.setMouseCallback("Source", selectKP)
    cv2.imshow("Source", frame)

    # keep looping until points have been selected
    print('Press any key when finished marking the points!! ')
    while True:
        if cv2.waitKey(1) > 0:
            break

    marked_frame = copy.deepcopy(frame)
    cv2.setMouseCallback("Source", draw_line)
    print('Press any key when finished creating skeleton!!')
    while True:
        if cv2.waitKey(1) > 0:
            break

    cv2.destroyAllWindows()
    kp_src = torch.tensor(kp_src).float()
    preprocess = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        Resize_Pad(cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size)])

    if len(skeleton) == 0:
        skeleton = [(0, 0)]

    support_img = preprocess(support_img).flip(0)[None]
    query_img = preprocess(query_img).flip(0)[None]
    # Create heatmap from keypoints
    genHeatMap = TopDownGenerateTargetFewShot()
    data_cfg = cfg.data_cfg
    data_cfg['image_size'] = np.array([cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size])
    data_cfg['joint_weights'] = None
    data_cfg['use_different_joint_weights'] = False
    kp_src_3d = torch.concatenate((kp_src, torch.zeros(kp_src.shape[0], 1)), dim=-1)
    kp_src_3d_weight = torch.concatenate((torch.ones_like(kp_src), torch.zeros(kp_src.shape[0], 1)), dim=-1)
    target_s, target_weight_s = genHeatMap._msra_generate_target(data_cfg, kp_src_3d, kp_src_3d_weight, sigma=1)
    target_s = torch.tensor(target_s).float()[None]
    target_weight_s = torch.tensor(target_weight_s).float()[None]

    data = {
        'img_s': [support_img],
        'img_q': query_img,
        'target_s': [target_s],
        'target_weight_s': [target_weight_s],
        'target_q': None,
        'target_weight_q': None,
        'return_loss': False,
        'img_metas': [{'sample_skeleton': [skeleton],
                       'query_skeleton': skeleton,
                       'sample_joints_3d': [kp_src_3d],
                       'query_joints_3d': kp_src_3d,
                       'sample_center': [kp_src.mean(dim=0)],
                       'query_center': kp_src.mean(dim=0),
                       'sample_scale': [kp_src.max(dim=0)[0] - kp_src.min(dim=0)[0]],
                       'query_scale': kp_src.max(dim=0)[0] - kp_src.min(dim=0)[0],
                       'sample_rotation': [0],
                       'query_rotation': 0,
                       'sample_bbox_score': [1],
                       'query_bbox_score': 1,
                       'query_image_file': '',
                       'sample_image_file': [''],
                       }]
    }

    # Load model
    model = build_posenet(cfg.model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)
    model.eval()

    with torch.no_grad():
        outputs = model(**data)

    # visualize results
    vis_s_weight = target_weight_s[0]
    vis_q_weight = target_weight_s[0]
    vis_s_image = support_img[0].detach().cpu().numpy().transpose(1, 2, 0)
    vis_q_image = query_img[0].detach().cpu().numpy().transpose(1, 2, 0)
    support_kp = kp_src_3d

    plot_results(vis_s_image,
                 vis_q_image,
                 support_kp,
                 vis_s_weight,
                 None,
                 vis_q_weight,
                 skeleton,
                 None,
                 torch.tensor(outputs['points']).squeeze(0),
                 out_dir=args.outdir)


if __name__ == '__main__':
    main()