File size: 17,064 Bytes
241adf2
 
 
 
 
e3ff5a8
43a0c69
241adf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248b92d
241adf2
 
d65b980
248b92d
7aa7d05
 
241adf2
 
 
 
 
 
 
 
248b92d
d65b980
241adf2
248b92d
241adf2
 
 
 
 
 
 
 
 
93cebd0
241adf2
93cebd0
241adf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248b92d
 
241adf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248b92d
241adf2
 
 
248b92d
241adf2
 
6ca8d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241adf2
248b92d
 
 
 
 
 
 
 
 
 
 
241adf2
 
248b92d
 
 
 
 
 
6a7e98c
241adf2
 
 
 
248b92d
 
241adf2
 
 
 
 
 
248b92d
241adf2
 
248b92d
 
241adf2
 
248b92d
241adf2
 
 
248b92d
6ca8d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241adf2
 
248b92d
 
6ca8d3a
248b92d
 
241adf2
248b92d
 
241adf2
248b92d
 
 
241adf2
 
 
 
 
ffccf07
241adf2
 
7a68ad4
 
241adf2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import argparse
# Copyright (c) OpenMMLab. All rights reserved.
import os
import random


os.system('python setup.py develop')

import gradio as gr
import numpy as np
import torch
from PIL import ImageDraw, Image
from matplotlib import pyplot as plt
from mmcv import Config
from mmcv.runner import load_checkpoint
from mmpose.core import wrap_fp16_model
from mmpose.models import build_posenet
from torchvision import transforms
from demo import Resize_Pad
from models import *
import matplotlib

matplotlib.use('agg')


def plot_results(support_img, query_img, support_kp, support_w, query_kp,
                 query_w, skeleton,
                 initial_proposals, prediction, radius=6):
    h, w, c = support_img.shape
    prediction = prediction[-1].cpu().numpy() * h
    query_img = (query_img - np.min(query_img)) / (
            np.max(query_img) - np.min(query_img))
    for id, (img, w, keypoint) in enumerate(zip([query_img],
                                                [query_w],
                                                [prediction])):
        f, axes = plt.subplots()
        plt.imshow(img)
        for k in range(keypoint.shape[0]):
            if w[k] > 0:
                kp = keypoint[k, :2]
                c = (1, 0, 0, 0.75) if w[k] == 1 else (0, 0, 1, 0.6)
                patch = plt.Circle(kp, radius, color=c)
                axes.add_patch(patch)
                axes.text(kp[0], kp[1], k)
                plt.draw()
        for l, limb in enumerate(skeleton):
            kp = keypoint[:, :2]
            if l > len(COLORS) - 1:
                c = [x / 255 for x in random.sample(range(0, 255), 3)]
            else:
                c = [x / 255 for x in COLORS[l]]
            if w[limb[0]] > 0 and w[limb[1]] > 0:
                patch = plt.Line2D([kp[limb[0], 0], kp[limb[1], 0]],
                                   [kp[limb[0], 1], kp[limb[1], 1]],
                                   linewidth=6, color=c, alpha=0.6)
                axes.add_artist(patch)
        plt.axis('off')  # command for hiding the axis.
        plt.subplots_adjust(0, 0, 1, 1, 0, 0)
        return plt


COLORS = [
    [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0],
    [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
    [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255],
    [255, 0, 255], [255, 0, 170], [255, 0, 85], [255, 0, 0]
]

def process(query_img, state,
            cfg_path='configs/demo_b.py'):
    cfg = Config.fromfile(cfg_path)
    width, height, _ = state['original_support_image'].shape
    kp_src_np = np.array(state['kp_src']).copy().astype(np.float32)
    kp_src_np[:, 0] = kp_src_np[:,0] / (width // 4) * cfg.model.encoder_config.img_size
    kp_src_np[:, 1] = kp_src_np[:,1] / (height // 4) * cfg.model.encoder_config.img_size
    kp_src_np = np.flip(kp_src_np, 1).copy()
    kp_src_tensor = torch.tensor(kp_src_np).float()
    preprocess = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        Resize_Pad(cfg.model.encoder_config.img_size,
                   cfg.model.encoder_config.img_size)])

    if len(state['skeleton']) == 0:
        state['skeleton'] = [(0, 0)]

    support_img = preprocess(state['original_support_image']).flip(0)[None]
    np_query = np.array(query_img)[:, :, ::-1].copy()
    q_img = preprocess(np_query).flip(0)[None]
    # Create heatmap from keypoints
    genHeatMap = TopDownGenerateTargetFewShot()
    data_cfg = cfg.data_cfg
    data_cfg['image_size'] = np.array([cfg.model.encoder_config.img_size,
                                       cfg.model.encoder_config.img_size])
    data_cfg['joint_weights'] = None
    data_cfg['use_different_joint_weights'] = False
    kp_src_3d = torch.cat(
        (kp_src_tensor, torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
    kp_src_3d_weight = torch.cat(
        (torch.ones_like(kp_src_tensor),
         torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
    target_s, target_weight_s = genHeatMap._msra_generate_target(data_cfg,
                                                                 kp_src_3d,
                                                                 kp_src_3d_weight,
                                                                 sigma=1)
    target_s = torch.tensor(target_s).float()[None]
    target_weight_s = torch.ones_like(
        torch.tensor(target_weight_s).float()[None])

    data = {
        'img_s': [support_img],
        'img_q': q_img,
        'target_s': [target_s],
        'target_weight_s': [target_weight_s],
        'target_q': None,
        'target_weight_q': None,
        'return_loss': False,
        'img_metas': [{'sample_skeleton': [state['skeleton']],
                       'query_skeleton': state['skeleton'],
                       'sample_joints_3d': [kp_src_3d],
                       'query_joints_3d': kp_src_3d,
                       'sample_center': [kp_src_tensor.mean(dim=0)],
                       'query_center': kp_src_tensor.mean(dim=0),
                       'sample_scale': [
                           kp_src_tensor.max(dim=0)[0] -
                           kp_src_tensor.min(dim=0)[0]],
                       'query_scale': kp_src_tensor.max(dim=0)[0] -
                                      kp_src_tensor.min(dim=0)[0],
                       'sample_rotation': [0],
                       'query_rotation': 0,
                       'sample_bbox_score': [1],
                       'query_bbox_score': 1,
                       'query_image_file': '',
                       'sample_image_file': [''],
                       }]
    }
    # Load model
    model = build_posenet(cfg.model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, checkpoint_path, map_location='cpu')
    model.eval()
    with torch.no_grad():
        outputs = model(**data)
    # visualize results
    vis_s_weight = target_weight_s[0]
    vis_q_weight = target_weight_s[0]
    vis_s_image = support_img[0].detach().cpu().numpy().transpose(1, 2, 0)
    vis_q_image = q_img[0].detach().cpu().numpy().transpose(1, 2, 0)
    support_kp = kp_src_3d
    out = plot_results(vis_s_image,
                       vis_q_image,
                       support_kp,
                       vis_s_weight,
                       None,
                       vis_q_weight,
                       state['skeleton'],
                       None,
                       torch.tensor(outputs['points']).squeeze(0),
                       )
    return out, state


def update_examples(support_img, posed_support, query_img, state, r=0.015, width=0.02):
    state['color_idx'] = 0
    state['original_support_image'] = np.array(support_img)[:, :, ::-1].copy()
    support_img, posed_support, _ = set_query(support_img, state, example=True)
    w, h = support_img.size
    draw_pose = ImageDraw.Draw(support_img)
    draw_limb = ImageDraw.Draw(posed_support)
    r = int(r * w)
    width = int(width * w)
    for pixel in state['kp_src']:
        leftUpPoint = (pixel[1] - r, pixel[0] - r)
        rightDownPoint = (pixel[1] + r, pixel[0] + r)
        twoPointList = [leftUpPoint, rightDownPoint]
        draw_pose.ellipse(twoPointList, fill=(255, 0, 0, 255))
        draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))
    for limb in state['skeleton']:
        point_a = state['kp_src'][limb[0]][::-1]
        point_b = state['kp_src'][limb[1]][::-1]
        if state['color_idx'] < len(COLORS):
            c = COLORS[state['color_idx']]
            state['color_idx'] += 1
        else:
            c = random.choices(range(256), k=3)
        draw_limb.line([point_a, point_b], fill=tuple(c), width=width)
    return support_img, posed_support, query_img, state


def get_select_coords(kp_support,
                      limb_support,
                      state,
                      evt: gr.SelectData,
                      r=0.015):
    pixels_in_queue = set()
    pixels_in_queue.add((evt.index[1], evt.index[0]))
    while len(pixels_in_queue) > 0:
        pixel = pixels_in_queue.pop()
        if pixel[0] is not None and pixel[1] is not None and pixel not in \
                state['kp_src']:
            state['kp_src'].append(pixel)
        else:
            continue
        if limb_support is None:
            canvas_limb = kp_support
        else:
            canvas_limb = limb_support
        canvas_kp = kp_support
        w, h = canvas_kp.size
        draw_pose = ImageDraw.Draw(canvas_kp)
        draw_limb = ImageDraw.Draw(canvas_limb)
        r = int(r * w)
        leftUpPoint = (pixel[1] - r, pixel[0] - r)
        rightDownPoint = (pixel[1] + r, pixel[0] + r)
        twoPointList = [leftUpPoint, rightDownPoint]
        draw_pose.ellipse(twoPointList, fill=(255, 0, 0, 255))
        draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))
    return canvas_kp, canvas_limb, state


def get_limbs(kp_support,
              state,
              evt: gr.SelectData,
              r=0.02, width=0.02):
    curr_pixel = (evt.index[1], evt.index[0])
    pixels_in_queue = set()
    pixels_in_queue.add((evt.index[1], evt.index[0]))
    canvas_kp = kp_support
    w, h = canvas_kp.size
    r = int(r * w)
    width = int(width * w)
    while len(pixels_in_queue) > 0 and curr_pixel != state['prev_clicked']:
        pixel = pixels_in_queue.pop()
        state['prev_clicked'] = pixel
        closest_point = min(state['kp_src'],
                            key=lambda p: (p[0] - pixel[0]) ** 2 +
                                          (p[1] - pixel[1]) ** 2)
        closest_point_index = state['kp_src'].index(closest_point)
        draw_limb = ImageDraw.Draw(canvas_kp)
        if state['color_idx'] < len(COLORS):
            c = COLORS[state['color_idx']]
        else:
            c = random.choices(range(256), k=3)
        leftUpPoint = (closest_point[1] - r, closest_point[0] - r)
        rightDownPoint = (closest_point[1] + r, closest_point[0] + r)
        twoPointList = [leftUpPoint, rightDownPoint]
        draw_limb.ellipse(twoPointList, fill=tuple(c))
        if state['count'] == 0:
            state['prev_pt'] = closest_point[1], closest_point[0]
            state['prev_pt_idx'] = closest_point_index
            state['count'] = state['count'] + 1
        else:
            if state['prev_pt_idx'] != closest_point_index:
                # Create Line and add Limb
                draw_limb.line(
                    [state['prev_pt'], (closest_point[1], closest_point[0])],
                    fill=tuple(c),
                    width=width)
                state['skeleton'].append(
                    (state['prev_pt_idx'], closest_point_index))
                state['color_idx'] = state['color_idx'] + 1
            else:
                draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))
            state['count'] = 0
    return canvas_kp, state


def set_query(support_img, state, example=False):
    if not example:
        state['skeleton'].clear()
        state['kp_src'].clear()
    state['original_support_image'] = np.array(support_img)[:, :, ::-1].copy()
    width, height = support_img.size
    support_img = support_img.resize((width // 4, width // 4),
                                     Image.Resampling.LANCZOS)
    return support_img, support_img, state


with gr.Blocks() as demo:
    state = gr.State({
        'kp_src': [],
        'skeleton': [],
        'count': 0,
        'color_idx': 0,
        'prev_pt': None,
        'prev_pt_idx': None,
        'prev_clicked': None,
        'original_support_image': None,
    })

    gr.Markdown('''
    # Pose Anything Demo
    We present a novel approach to category agnostic pose estimation that 
    leverages the inherent geometrical relations between keypoints through a 
    newly designed Graph Transformer Decoder. By capturing and incorporating 
    this crucial structural information, our method enhances the accuracy of 
    keypoint localization, marking a significant departure from conventional 
    CAPE techniques that treat keypoints as isolated entities.
    ### [Paper](https://arxiv.org/abs/2311.17891) | [Official Repo](https://github.com/orhir/PoseAnything) 
    ## Instructions
    1. Upload an image of the object you want to pose on the **left** image.
    2. Click on the **left** image to mark keypoints.
    3. Click on the keypoints on the **right** image to mark limbs.
    4. Upload an image of the object you want to pose to the query image (
    **bottom**).
    5. Click **Evaluate** to pose the query image.
    ''')
    with gr.Row():
        support_img = gr.Image(label="Support Image",
                               type="pil",
                               info='Click to mark keypoints').style(
            height=400, width=400)
        posed_support = gr.Image(label="Posed Support Image",
                                 type="pil",
                                 interactive=False).style(height=400,
                                                          width=400)
    with gr.Row():
        query_img = gr.Image(label="Query Image",
                             type="pil").style(height=400, width=400)
    with gr.Row():
        eval_btn = gr.Button(value="Evaluate")
    with gr.Row():
        output_img = gr.Plot(label="Output Image", height=400, width=400)
    with gr.Row():
        gr.Markdown("## Examples")
    with gr.Row():
        gr.Examples(
            examples=[
                ['examples/dog2.png',
                 'examples/dog2.png',
                 'examples/dog1.png',
                 {'kp_src': [(50, 58), (51, 78), (66, 57), (118, 79),
                             (154, 79), (217, 74), (218, 103), (156, 104),
                             (152, 151), (215, 162), (213, 191),
                             (152, 174), (108, 171)],
                  'skeleton': [(0, 1), (1, 2), (0, 2), (3, 4), (4, 5),
                               (3, 7), (7, 6), (3, 12), (12, 8), (8, 9),
                               (12, 11), (11, 10)], 'count': 0,
                  'color_idx': 0, 'prev_pt': (174, 152),
                  'prev_pt_idx': 11, 'prev_clicked': (207, 186),
                  'original_support_image': None,
                  }
                 ],
                ['examples/sofa1.jpg',
                 'examples/sofa1.jpg',
                 'examples/sofa2.jpg',
                 {
                     'kp_src': [(82, 28), (65, 30), (52, 26), (65, 50),
                                (84, 52), (53, 54), (43, 52), (45, 71),
                                (81, 69), (77, 39), (57, 43), (58, 64),
                                (46, 42), (49, 65)],
                     'skeleton': [(0, 1), (3, 1), (3, 4), (10, 9), (11, 8),
                                  (1, 10), (10, 11), (11, 3), (1, 2), (7, 6),
                                  (5, 13), (5, 3), (13, 11), (12, 10), (12, 2),
                                  (6, 10), (7, 11)], 'count': 0,
                     'color_idx': 23, 'prev_pt': (71, 45), 'prev_pt_idx': 7,
                     'prev_clicked': (56, 63),
                     'original_support_image': None,
                 }],
                ['examples/person1.jpeg',
                 'examples/person1.jpeg',
                 'examples/person2.jpeg',
                 {
                     'kp_src': [(121, 95), (122, 160), (154, 130), (184, 106),
                                (181, 153)],
                     'skeleton': [(0, 1), (1, 2), (0, 2), (2, 3), (2, 4),
                                  (4, 3)], 'count': 0, 'color_idx': 6,
                     'prev_pt': (153, 181), 'prev_pt_idx': 4,
                     'prev_clicked': (181, 108),
                     'original_support_image': None,
                 }]
            ],
            inputs=[support_img, posed_support, query_img, state],
            outputs=[support_img, posed_support, query_img, state],
            fn=update_examples,
            run_on_click=True,
        )

    support_img.select(get_select_coords,
                       [support_img, posed_support, state],
                       [support_img, posed_support, state])
    support_img.upload(set_query,
                       inputs=[support_img, state],
                       outputs=[support_img, posed_support, state])
    posed_support.select(get_limbs,
                         [posed_support, state],
                         [posed_support, state])
    eval_btn.click(fn=process,
                   inputs=[query_img, state],
                   outputs=[output_img, state])


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Pose Anything Demo')
    parser.add_argument('--checkpoint',
                        help='checkpoint path',
                        default='1shot-swin_graph_split1.pth')
    args = parser.parse_args()
    checkpoint_path = args.checkpoint
    print("Loading checkpoint from {}".format(checkpoint_path))
    print(os.path.exists(checkpoint_path))
    demo.launch()