PoseAnything / demo.py
orhir's picture
Upload 97 files
241adf2
import argparse
import copy
import os
import pickle
import random
import cv2
import numpy as np
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.runner import load_checkpoint
from mmpose.core import wrap_fp16_model
from mmpose.models import build_posenet
from torchvision import transforms
from models import *
import torchvision.transforms.functional as F
from tools.visualization import plot_results
COLORS = [
[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0],
[85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
[0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255],
[255, 0, 255], [255, 0, 170], [255, 0, 85], [255, 0, 0]]
class Resize_Pad:
def __init__(self, w=256, h=256):
self.w = w
self.h = h
def __call__(self, image):
_, w_1, h_1 = image.shape
ratio_1 = w_1 / h_1
# check if the original and final aspect ratios are the same within a margin
if round(ratio_1, 2) != 1:
# padding to preserve aspect ratio
if ratio_1 > 1: # Make the image higher
hp = int(w_1 - h_1)
hp = hp // 2
image = F.pad(image, (hp, 0, hp, 0), 0, "constant")
return F.resize(image, [self.h, self.w])
else:
wp = int(h_1 - w_1)
wp = wp // 2
image = F.pad(image, (0, wp, 0, wp), 0, "constant")
return F.resize(image, [self.h, self.w])
else:
return F.resize(image, [self.h, self.w])
def transform_keypoints_to_pad_and_resize(keypoints, image_size):
trans_keypoints = keypoints.clone()
h, w = image_size[:2]
ratio_1 = w / h
if ratio_1 > 1:
# width is bigger than height - pad height
hp = int(w - h)
hp = hp // 2
trans_keypoints[:, 1] = keypoints[:, 1] + hp
trans_keypoints *= (256. / w)
else:
# height is bigger than width - pad width
wp = int(image_size[1] - image_size[0])
wp = wp // 2
trans_keypoints[:, 0] = keypoints[:, 0] + wp
trans_keypoints *= (256. / h)
return trans_keypoints
def parse_args():
parser = argparse.ArgumentParser(description='Pose Anything Demo')
parser.add_argument('--support', help='Image file')
parser.add_argument('--query', help='Image file')
parser.add_argument('--config', default=None, help='test config file path')
parser.add_argument('--checkpoint', default=None, help='checkpoint file')
parser.add_argument('--outdir', default='output', help='checkpoint file')
parser.add_argument(
'--fuse-conv-bn',
action='store_true',
help='Whether to fuse conv and bn, this will slightly increase'
'the inference speed')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
args = parser.parse_args()
return args
def merge_configs(cfg1, cfg2):
# Merge cfg2 into cfg1
# Overwrite cfg1 if repeated, ignore if value is None.
cfg1 = {} if cfg1 is None else cfg1.copy()
cfg2 = {} if cfg2 is None else cfg2
for k, v in cfg2.items():
if v:
cfg1[k] = v
return cfg1
def main():
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.data.test.test_mode = True
os.makedirs(args.outdir, exist_ok=True)
# Load data
support_img = cv2.imread(args.support)
query_img = cv2.imread(args.query)
if support_img is None or query_img is None:
raise ValueError('Fail to read images')
preprocess = transforms.Compose([
transforms.ToTensor(),
Resize_Pad(cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size)])
# frame = copy.deepcopy(support_img)
padded_support_img = preprocess(support_img).cpu().numpy().transpose(1, 2, 0) * 255
frame = copy.deepcopy(padded_support_img.astype(np.uint8).copy())
kp_src = []
skeleton = []
count = 0
prev_pt = None
prev_pt_idx = None
color_idx = 0
def selectKP(event, x, y, flags, param):
nonlocal kp_src, frame
# if we are in points selection mode, the mouse was clicked,
# list of points with the (x, y) location of the click
# and draw the circle
if event == cv2.EVENT_LBUTTONDOWN:
kp_src.append((x, y))
cv2.circle(frame, (x, y), 2, (0, 0, 255), 1)
cv2.imshow("Source", frame)
if event == cv2.EVENT_RBUTTONDOWN:
kp_src = []
frame = copy.deepcopy(support_img)
cv2.imshow("Source", frame)
def draw_line(event, x, y, flags, param):
nonlocal skeleton, kp_src, frame, count, prev_pt, prev_pt_idx, marked_frame, color_idx
if event == cv2.EVENT_LBUTTONDOWN:
closest_point = min(kp_src, key=lambda p: (p[0] - x) ** 2 + (p[1] - y) ** 2)
closest_point_index = kp_src.index(closest_point)
if color_idx < len(COLORS):
c = COLORS[color_idx]
else:
c = random.choices(range(256), k=3)
color = color_idx
cv2.circle(frame, closest_point, 2, c, 1)
if count == 0:
prev_pt = closest_point
prev_pt_idx = closest_point_index
count = count + 1
cv2.imshow("Source", frame)
else:
cv2.line(frame, prev_pt, closest_point, c, 2)
cv2.imshow("Source", frame)
count = 0
skeleton.append((prev_pt_idx, closest_point_index))
color_idx = color_idx + 1
elif event == cv2.EVENT_RBUTTONDOWN:
frame = copy.deepcopy(marked_frame)
cv2.imshow("Source", frame)
count = 0
color_idx = 0
skeleton = []
prev_pt = None
cv2.namedWindow("Source", cv2.WINDOW_NORMAL)
cv2.resizeWindow('Source', 800, 600)
cv2.setMouseCallback("Source", selectKP)
cv2.imshow("Source", frame)
# keep looping until points have been selected
print('Press any key when finished marking the points!! ')
while True:
if cv2.waitKey(1) > 0:
break
marked_frame = copy.deepcopy(frame)
cv2.setMouseCallback("Source", draw_line)
print('Press any key when finished creating skeleton!!')
while True:
if cv2.waitKey(1) > 0:
break
cv2.destroyAllWindows()
kp_src = torch.tensor(kp_src).float()
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
Resize_Pad(cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size)])
if len(skeleton) == 0:
skeleton = [(0, 0)]
support_img = preprocess(support_img).flip(0)[None]
query_img = preprocess(query_img).flip(0)[None]
# Create heatmap from keypoints
genHeatMap = TopDownGenerateTargetFewShot()
data_cfg = cfg.data_cfg
data_cfg['image_size'] = np.array([cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size])
data_cfg['joint_weights'] = None
data_cfg['use_different_joint_weights'] = False
kp_src_3d = torch.concatenate((kp_src, torch.zeros(kp_src.shape[0], 1)), dim=-1)
kp_src_3d_weight = torch.concatenate((torch.ones_like(kp_src), torch.zeros(kp_src.shape[0], 1)), dim=-1)
target_s, target_weight_s = genHeatMap._msra_generate_target(data_cfg, kp_src_3d, kp_src_3d_weight, sigma=1)
target_s = torch.tensor(target_s).float()[None]
target_weight_s = torch.tensor(target_weight_s).float()[None]
data = {
'img_s': [support_img],
'img_q': query_img,
'target_s': [target_s],
'target_weight_s': [target_weight_s],
'target_q': None,
'target_weight_q': None,
'return_loss': False,
'img_metas': [{'sample_skeleton': [skeleton],
'query_skeleton': skeleton,
'sample_joints_3d': [kp_src_3d],
'query_joints_3d': kp_src_3d,
'sample_center': [kp_src.mean(dim=0)],
'query_center': kp_src.mean(dim=0),
'sample_scale': [kp_src.max(dim=0)[0] - kp_src.min(dim=0)[0]],
'query_scale': kp_src.max(dim=0)[0] - kp_src.min(dim=0)[0],
'sample_rotation': [0],
'query_rotation': 0,
'sample_bbox_score': [1],
'query_bbox_score': 1,
'query_image_file': '',
'sample_image_file': [''],
}]
}
# Load model
model = build_posenet(cfg.model)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
load_checkpoint(model, args.checkpoint, map_location='cpu')
if args.fuse_conv_bn:
model = fuse_conv_bn(model)
model.eval()
with torch.no_grad():
outputs = model(**data)
# visualize results
vis_s_weight = target_weight_s[0]
vis_q_weight = target_weight_s[0]
vis_s_image = support_img[0].detach().cpu().numpy().transpose(1, 2, 0)
vis_q_image = query_img[0].detach().cpu().numpy().transpose(1, 2, 0)
support_kp = kp_src_3d
plot_results(vis_s_image,
vis_q_image,
support_kp,
vis_s_weight,
None,
vis_q_weight,
skeleton,
None,
torch.tensor(outputs['points']).squeeze(0),
out_dir=args.outdir)
if __name__ == '__main__':
main()