PoseAnything / train.py
orhir's picture
Upload 97 files
241adf2
import argparse
import copy
import os
import os.path as osp
import time
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.runner import get_dist_info, init_dist, set_random_seed
from mmcv.utils import get_git_hash
from models import * # noqa
from models.apis import train_model
from models.datasets import build_dataset
from mmpose import __version__
from mmpose.models import build_posenet
from mmpose.utils import collect_env, get_root_logger
def parse_args():
parser = argparse.ArgumentParser(description='Train a pose model')
parser.add_argument('--config', default=None, help='train config file path')
parser.add_argument('--work-dir', default=None, help='the dir to save logs and models')
parser.add_argument(
'--resume-from', help='the checkpoint file to resume from')
parser.add_argument(
'--auto-resume', type=bool, default=True, help='automatically detect the latest checkpoint in word dir and resume from it.')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument(
'--gpus',
type=int,
help='number of gpus to use '
'(only applicable to non-distributed training)')
group_gpus.add_argument(
'--gpu-ids',
type=int,
nargs='+',
help='ids of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
default={},
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. For example, '
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument(
'--autoscale-lr',
action='store_true',
help='automatically scale lr with the number of gpus')
parser.add_argument(
'--show',
action='store_true',
help='whether to display the prediction results in a window.')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# work_dir is determined in this priority: CLI
# > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
# auto resume
if args.auto_resume:
checkpoint = os.path.join(args.work_dir, 'latest.pth')
if os.path.exists(checkpoint):
cfg.resume_from = checkpoint
if args.resume_from is not None:
cfg.resume_from = args.resume_from
if args.gpu_ids is not None:
cfg.gpu_ids = args.gpu_ids
else:
cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
if args.autoscale_lr:
# apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# re-set gpu_ids with distributed training mode
_, world_size = get_dist_info()
cfg.gpu_ids = range(world_size)
# create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
# init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta = dict()
# log env info
env_info_dict = collect_env()
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
dash_line = '-' * 60 + '\n'
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
dash_line)
meta['env_info'] = env_info
# log some basic info
logger.info(f'Distributed training: {distributed}')
logger.info(f'Config:\n{cfg.pretty_text}')
# set random seeds
args.seed = 1
args.deterministic = True
if args.seed is not None:
logger.info(f'Set random seed to {args.seed}, '
f'deterministic: {args.deterministic}')
set_random_seed(args.seed, deterministic=args.deterministic)
cfg.seed = args.seed
meta['seed'] = args.seed
model = build_posenet(cfg.model)
train_datasets = [build_dataset(cfg.data.train)]
# if len(cfg.workflow) == 2:
# val_dataset = copy.deepcopy(cfg.data.val)
# val_dataset.pipeline = cfg.data.train.pipeline
# datasets.append(build_dataset(val_dataset))
val_dataset = copy.deepcopy(cfg.data.val)
val_dataset = build_dataset(val_dataset, dict(test_mode=True))
if cfg.checkpoint_config is not None:
# save mmpose version, config file content
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmpose_version=__version__ + get_git_hash(digits=7),
config=cfg.pretty_text,
)
train_model(
model,
train_datasets,
val_dataset,
cfg,
distributed=distributed,
validate=(not args.no_validate),
timestamp=timestamp,
meta=meta)
if __name__ == '__main__':
main()